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Code Generation by Model Transformation

A Case Study in Transformation Modularity

Zef Hemel, Lennart C. L. Kats, Eelco Visser

Software Engineering Research Group, Delft University of Technology,
The Netherlands, Z.Hemel@tudelft.nl, L.C.L.Kats@tudelft.nl, visser@acm.org

Abstract. The realization of model-driven software development re-
quires effective techniques for implementing code generators. In this pa-
per, we present a case study of code generation by model transforma-
tion with Stratego, a high-level transformation language based on the
paradigm of rewrite rules with programmable strategies that integrates
model-to-model, model-to-code, and code-to-code transformations. The
use of concrete object syntax guarantees syntactic correctness of code pat-
terns, and enables the subsequent transformation of generated code. The
composability of strategies supports two dimensions of transformation
modularity. Vertical modularity is achieved by designing a generator as
a pipeline of model-to-model transformations that gradually transforms
a high-level input model to an implementation. Horizontal modularity
is achieved by supporting the definition of plugins which implement all
aspects of a language feature. We discuss the application of these tech-
niques in the implementation of WebDSL, a domain-specific language for
dynamic web applications with a rich data model.

1 Introduction

Model-driven software development aims at improving productivity and main-
tainability of software by raising the level of abstraction from source code in a
general purpose language to high-level, domain-specific models such that devel-
opers can concentrate on application logic rather than the accidental complexity
of low-level implementation details. The essence of the approach is to shift the
knowledge about these implementation details from the minds of programmers
to the templates of code generators that automatically translate models into im-
plementations. Since the code generators themselves need to be developed and
maintained as well, effective languages and tools for implementing generators are
crucial for realizing model-driven software development. Many paradigms and
technologies for transformation and generation are under development. In order
to compare the various proposals, large scale case studies are needed. To this
end we are developing WebDSL, a domain-specific language (DSL) for modeling
dynamic web applications with a rich data model. In earlier work we described
the development of WebDSL as a case study in domain-specific language engi-
neering, i.e. a method to find the design of a new DSL [24].
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In this paper, we discuss a case study in code generation by model transforma-
tion, an approach to the organization of DSL implementations that we use in the
implementation of WebDSL. We have implemented the approach with the Strat-
ego/XT program transformation system [23, 5]. Stratego is a high-level transfor-
mation language that integrates model-to-model, model-to-code, and code-to-
code transformations. The language provides rewrite rules for the definition of
basic transformations, and programmable strategies for building complex trans-
formations that control the application of rules. The use of concrete object syn-
tax [22] in the definition of transformation rules improves the readability of rules,
guarantees syntactic correctness of code patterns, and supports the subsequent
transformation of generated code, which is not the case for text-based template
engines such as Velocity [19] or xPand [25].

The composability of strategies supports two dimensions of transformation
modularity used to realize separation of concerns in DSL implementations. First,
vertical modularization is used to reduce the semantic gap between input and
output model. Rather than directly generating code from the input model, the
generator is constructed as a pipeline of model-to-model transformations that
gradually transform a high-level input model to a low-level implementation
model. Since even the generated code has a structured model representation
to which transformations can be applied, any restrictions in modularity of the
target language can be alleviated by extending it with new constructs to sup-
port better modularity. For example, we have created an extension of Java with
partial classes, interface extraction, and name generation in order to simplify
code generation rules.

Secondly, the approach supports horizontal modularization, that is, the sep-
arate definition of all transformations for a single language construct. This is
the basis for meta-model extensibility through generator extensibility. The basic
transformation pipeline provides an implementation for a base language. Exten-
sions to the base language are implemented as plug-ins that extend the basic
pipeline. Combining horizontal and vertical extensibility makes it possible to
implement new domain-specific abstractions as plug-ins to the base language.

In the next section we give a brief introduction to WebDSL and the architec-
ture of its implementation. In the rest of the paper we discuss the core ideas of
the code generation by model transformation approach, i.e., code generation by
rewriting (Section 3), model-to-model transformations to reduce input models
to implementation models (Section 4), the role of semantic analyses and an-
notations (Section 5), and modularity and extensibility of the transformations
(Section 6). We compare the approach to related work in Section 7.

2 WebDSL

WebDSL is a domain-specific language for the implementation of dynamic web
applications with a rich data model. The language provides sub-languages for the
specification of data models and for the definition of custom pages for viewing
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entity Blog {
title :: String (name)
entries <> List<BlogEntry>

}

entity BlogEntry {
blog -> Blog

(inverse=Blog.entries)
title :: String (name)
author -> User
created :: Date
content :: WikiText

}

define view page blog(b : Blog) {
main()
title{ text(b.title) }
define body() {

section{
header{ output(b) }
for(entry : BlogEntry in b.entries

order by entry.created desc) {
section {

header { output(entry) }
par{ "by " output(entry.author)

" at " output(entry.created) }
par{ output(entry.content) } } } } } }

Fig. 1. Example WebDSL data model and page definition.

and editing objects in the data model. Fig. 1 illustrates this by means of a data
model and view page for a blogging application.

The data model introduces entity definitions (e.g., Blog, BlogEntry), con-
sisting of properties with a name and a type. Types of properties are either
value types (indicated by ::) or associations to other entities defined in the
data model. Value types are basic data types such as String and Date, but
also domain-specific types such as WikiText that carry additional functionality.
Associations are composite (the referrer owns the object, indicated by <>) or
referential (the object may be shared, indicated by ->). The inverse annota-
tion on a property declares a relation with automatic synchronization of two
properties.

Page definitions consist of the name of the page, the names and types of the
objects used as parameters, and a presentation of the data contained in the pa-
rameter objects. For example, the blog(b : Blog) definition in Fig. 1 creates a
page showing all blog entries for blog b. WebDSL provides basic markup opera-
tors such as section, header, and list for defining the structure of a page. Data
from the object parameters (and the objects they refer to) are injected in the
page by data access operations such as output. Collections of data can be pre-
sented using the iterator construct for, which can filter and sort the elements of
a collection. It is also possible to present content conditionally on some property
of an object, for example, whether the user has the right access control permis-
sions. User-defined templates allow the developer to define reusable chunks of
WebDSL code. For example, the main() template used in Fig. 1 defines a general
set-up for the page (navigation sidebars and menus) that is shared among many
pages of the application. Finally, WebDSL supports separation of concerns by
means of a module mechanism, and a separate sub-language for access control,
which is beyond the scope of this paper.

The architecture of the WebDSL generator follows the four-level model orga-
nization of Bézivin [3] as illustrated in Fig. 2. At the M3 level we find the SDF
metametamodel, which is the grammar of the Syntax Definition Formalism SDF,
which is defined in (and thus conforms to) itself [21]. At the M2 level we find
the WebDSL meta-model, i.e., the grammar of WebDSL defined in SDF. At the
M1 level we find WebDSL models of web applications, consisting of entity and

SERG Code Generation by ModelTransformation

TUD-SERG-2008-012 3



page definitions. At the M0 level we find the actual web applications consisting
of Java classes and XHTML pages, which represent the models at the M1 level.

Fig. 2. Organization of models
and artifacts of the WebDSL
generator.

In the implementation of WebDSL that we
have realized [24], the M0 systems are based
upon the Java/Seam architecture, consist-
ing of high-level application frameworks,
such as the Java Persistence API (JPA),
JavaServer Faces (JSF), and the Seam web
framework. For each entity definition, a cor-
responding entity class is generated with
fields, getters, and setters for the properties
of the entity, annotated for object-relational
mapping according to the JPA. For each
page definition, a JSF XHTML page, a
Seam Java bean class, and an accompany-
ing interface are generated. In the following
sections we discuss the organization of the
generator as a pipeline of model-to-model
transformations, and the techniques used to
realize these transformations. The transfor-
mations are expressed in the Stratego trans-
formation language [23, 5], which is based on
the paradigm of rewrite rules with programmable rewriting strategies.

3 Code Generation by Rewriting

WebDSL is a textual, domain-specific language and its M2 meta-model is a
grammar describing the valid sentences of that language. From the grammar, we
automatically generate a parser, which transforms the textual representation of
a model to an abstract syntax tree (AST). The AST conforms to a regular tree
grammar, another M2 meta-model that defines a set of valid trees, and which is
obtained automatically from the grammar. All subsequent transformations are
applied to the AST corresponding to the textual representation of the model.
The WebDSL generator transforms high-level models into Java code and XML
files. These target languages are also described by a grammar and a derived
abstract syntax definition. All transformations are expressed in Stratego, which
can apply transformations to any models with an abstract syntax definition.

webdsl-to-seam =
import-modules
; generate-code
; output-generated-files

The WebDSL generator can be decomposed into
three main steps, which can be expressed and com-
bined in Stratego as a strategy. A strategy is essen-
tially a function that controls the order of application
of more basic transformations. The basic strategy webdsl-to-seam is defined as
a sequence of three steps, which are applied to the input model. First, starting
with the main module of an application, all imported modules are parsed. Next,
the combined model is transformed to a model of the generated Java and XML
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files. Finally, these code models are written to files and packaged for deployment
to a web server. In later sections we will discuss refinements of this basic strategy.

3.1 Code Generation Rules

parameter-to-bean-property :
|[ x : srt ]| ->
<emit-java-code> |[

@Partial class x_PageBean {
@RequestParameter("~x ") private Long x #Id;
private t _#x ;
public void set#x (t x ) { _#x = x ; }
public t get#x () { return x ; }
@Partial void initializeParameter() { bstm* }

}
]|
where bstm* := <parameter-to-initialization>

; t := <defined-java-type> srt
; x_PageBean := <CurrentPageBean>

Fig. 3. Rewrite rule transforming WebDSL
source to Java target code using concrete
syntax.

The elementary transformations
that are combined by strate-
gies are rewrite rules of the
form L : p1 -> p2 where s.
The name L of a rule can be
used to invoke it in a strat-
egy. When applied, the left-
hand side pattern p1 is matched
against the subject term, bind-
ing any variables in the pat-
tern to corresponding sub-terms
of the subject term. When the
match succeeds, and the condi-
tion s succeeds as well, the sub-
ject term is replaced with the instantiation of the right-hand side pattern p2.
Rewrite rules are used for code generation by translating a fragment of the
source language on the left-hand side to a fragment of the target language on
the right-hand side. This is illustrated in Fig. 3 with a rewrite rule that rewrites
a WebDSL page parameter, such as b : Blog in the page definition of Fig. 1,
into a fragment of Java code that includes fields, accessors, and initialization
code implementing the processing of a page parameter in a Seam page bean.

Rewrite rules in Stratego can make use of the concrete syntax of the trans-
formed language [22] using the |[ and ]| quotation construct. For example, a
Java return statement can be expressed as |[ return true; ]|, rather than
the abstract syntax form Return(Some(Lit(True()))). A language’s concrete
syntax is usually more concise and more familiar than its abstract syntax. The
Stratego compiler parses concrete syntax quotations at compile-time, checking
their syntax and replacing them with equivalent abstract syntax fragments.

Using meta-variables in concrete syntax fragments (written in italics), the
rule in Fig. 3 matches any parameter x of type (or “sort”) srt . In the where
clause of the rule, a number of meta-variables are set for use in the produced
Java fragment. For instance, t is set to the Java equivalent of WebDSL type
srt , and x PageBean is set to the current page bean.

In Stratego, the application of rewrite rules is under the control of pro-
grammable strategies, such that transformations can be explicitly staged. For
example, the WebDSL generate-code transformation strategy uses a top-down
traversal to visit all model elements for which code needs to be generated. This
is expressed using the generic topdown traversal strategy as follows:

generate-code = topdown(try(argument-to-bean-property <+ ...))

Different rewrite rules are combined using the <+ operator, which tries to apply
each rule in the given order. Using the try strategy, the generate-code strategy
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will try to apply these rules, but will not fail if no rules are applicable, so that
the topdown traversal will proceed even if none of the rules match.

3.2 Transforming Generated Code

In Stratego, generated code has a structured representation just like the input
model of the generator — as opposed to the flat textual representation produced
by traditional template engines. Therefore, additional transformations can be ap-
plied to generated code. This enables the use of an enriched version of the target
language in generation, reducing the semantic gap between model and code, and
thus simplifying the generator by capturing common generation patterns, and
ensuring separation of concerns in their implementation.

For instance, in Fig. 3, the generated Java code takes the form of a partial
class. That is, the rule defines only part of the generated class, as indicated by the
@Partial annotation. In a later stage of the code generation process, all partial
class fragments for the same class are merged. This approach eliminates the need
for maintaining an aggregated model at this stage of the generator. In particular,
the generated fragment is not used locally to replace the model fragment. Rather,
in this case using emit-java-code, all code fragments are collected centrally
for later assembly. Similarly, the generated initializeParameter method is a
@Partial method, so that it can be extended for other page parameters. The
order in which the statements of partial methods are merged is unspecified, thus
no dependencies between statements in different definitions of a partial method
should exist, an invariant that should be maintained by the developer of the
generator.

Another extension of Java that is designed to simplify code generation, is the
# identifier concatenation operator. It is used to generate the names of accessors,
field, and classes that are commonly built up from different parts. For example,
for accessors, get#x is used to generate a ‘get’ accessor for meta-variable x . In
a later stage of the generator, such concatenations are evaluated and capitalized
according to the Java conventions (e.g., using camelCase for method names).

Generated page bean classes require a matching interface definition. This
interface is automatically generated in a separate generation stage: after merg-
ing all partial classes, such an interface is extracted from each generated class
annotated with a @RequiresInterface annotation.

4 Semantic Analysis and Annotation

webdsl-to-seam =
import-modules
; typecheck
; generate-code
; output-generated-files

Not all models that conform to the WebDSL syntax
are valid. For instance, identifiers may refer to a non-
existing entity, property, or function. Such models vi-
olate the static semantic constraints of WebDSL. A
separate typechecking stage of the generator checks these constraints, and re-
ports any violations found. The semantic information gathered at this stage is
also used to provide context information for other transformations, as we will
discuss in the next section.
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typecheck-variable :
Var(x ) -> Var(x ){Type(t )}
where if not(t := <TypeOf> x ) then

typecheck-error(|
["Undeclared variable ",x ," referenced"])

end
declare-page-argument :

|[ x : srt ]| -> |[ x : srt ]|
where if not(<TypeExists> srt ) then

typecheck-error(|
["Illegal type ",srt ," for parameter ",x ])

else
rules( TypeOf : x -> srt )

end

Fig. 4. Typechecking with dynamic rules.

Typechecking involves a
context-sensitive global-to-local
transformation in which type
information is propagated from
the declaration site of an iden-
tifier to its use sites. Strat-
ego provides support for such
transformations through its
mechanism of dynamic rewrite
rules [6], which allows the def-
inition of new rewrite rules
at run-time. For example, the
typecheck-variable rule in Fig. 4 defines the checking of the use of a vari-
able with abstract syntax Var(x ). The dynamic rule TypeOf is used to rewrite
the identifier x to its type t . If this fails an error is reported. Otherwise, the
variable is annotated with its type. The TypeOf rule is defined when a variable
declaration, which may be a page parameter or a local variable, is encountered.
For example, the declare-page-argument rule checks that the type used in the
declaration of a page parameter is a valid type (using the TypeExists dynamic
rule). If the type does exist, the rules construct is used to define a new instance
of the TypeOf rule specific to the values of x and srt encountered in the decla-
ration. Dynamic rule scopes are used to limit the scope of rules to the traversal
of a fragment of the model. For example, the TypeOf rule for a page parameter
is valid only during the traversal of that page. Similarly, functions and for loops
also define a local scope.

5 Model-to-Model Transformations

webdsl-to-seam =
import-modules
; typecheck
; normalize-syntax
; expand-page-templates
; derive
; merge-emitted-decs
; generate-code
; merge-partial-classes
; output-generated-files

Extending the target language helps in simplifying the
translation from models to code. However, directly
translating input models to code may still require
complex transformations, in particular, when adding
higher-level abstractions. Instead of a complex model-
to-code translation, the WebDSL generator pipeline
consists of several stages of model-to-model transfor-
mations that reduce models in the full WebDSL lan-
guage to core WebDSL, which is domain-specific, yet relatively close to the
target platform. As a result, only normalized core language constructs have to
be transformed to the target platform during code generation, which improves
retargetability. All the abstractions built on top of the core language can be
ignored by the back-end. Staging the transformations in a pipeline is a case of
vertical modularity ; each stage is a separately defined transformation that is only
concerned with one aspect of the code generator. In this section we illustrate this
with a discussion of typical transformations applied in such a pipeline: syntactic
normalization, and the implementation of user-defined and generative abstrac-
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tions. We also discuss the problem of preserving or reproducing the annotations
produced by semantic analyses.

5.1 Syntactic Normalization

NormalizeSyntax :
|[ text(e1 ,e2 ,e* ){} elem* ]| ->
|[ text(e1 ) text(e2 ,e* ){} elem* ]|

NormalizeSyntax :
|[ for(x : srt in e1

order by e2 ){elem* } ]| ->
|[ for(x : srt in e1

where true
order by e2 ){elem* } ]|

normalize-syntax =
topdown(repeat(NormalizeSyntax))

Fig. 5. Local-to-local syntactic
normalization rules.

Syntactic abstractions, also known as syntac-
tic sugar, provide new language constructs
that support expression of functionality that
is already provided by the base language in a
more compact manner. The implementation
of such abstractions can often be realized by
means of simple local-to-local transformation
rules (Fig. 5), but sometimes, more complex
local-to-global rules (Fig. 7) are needed.

A local-to-local rewrite replaces a model
fragment with another without using or pro-
ducing other parts of the model, as illustrated by the examples in Fig. 5. The first
rule normalizes applications of the text construct with multiple arguments to a
list of applications of text with a single argument. More precisely, it splits off
the first argument of a multi-argument application. Repeated application of the
rule ensures that only singleton applications remain. For example, the applica-
tion text(blog.title, ": ", blog.author) is reduced to text(blog.title)
text(": ") text(blog.author). Similarly, the second rule rewrites an occur-
rence of the for statement without a where clause to one with the universally
valid where true clause. These normalizations ensure that later stages of the
code generator only need to deal with one syntactic variant, i.e., singleton ap-
plications of text, and for statements with a where clause. The application
of normalization rules is controlled by the normalize-syntax strategy, which
performs a top-down traversal, which repeatedly applies rules to each element.

[e.title
for(e : BlogEntry in b.entries

where e.created > date
order by e.created desc)]

globals { function
lcf_33(b : Blog, date : Date) {
var y : List<String> := [];
for(e : BlogEntry in b.entries

where e.created > date
order by e.created desc)

{ y.add(e.title); } } }

Fig. 6. List comprehen-
sion and implementation.

A local-to-global transformation rewrites a
local element, but also produces elements that
should be placed elsewhere in the model. An ex-
ample of such a transformation is the lifting of list
comprehensions. These provide declarative ma-
nipulations and queries on lists and sets, i.e., a
combined map, filter and sort operation. As an
example, consider the expression in Fig. 6, which
retrieves the list of blog entries created after date,
sorted in reverse chronological order. Such expres-
sions can be computed by means of the for state-
ment of WebDSL, as shown in the second part of Fig. 6. Statements, however,
may not be used as expressions.

The transformation in Fig. 7 lifts a list comprehension to a new global func-
tion definition and replaces the expression with a call to the generated function
The free variables of the list comprehension expression are extracted and passed
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as parameters to the generated function. The emit-webdsl-dec rule takes the
newly defined function and stores it in a dynamic rule. Declarations emitted in

Lift :
|[ [e for(x : srt in e2 where e3 order by e4 )] ]| ->
|[ x_fun (arg* ) ]|
where x_fun := <newname> "lcf"

; free-vars := <collect-free-vars> (e ,e2 ,e3 ,e4 )
; param* := <map(build-param)> free-vars
; arg* := <map(build-arg)> free-vars
; <emit-webdsl-dec> |[

globals {
function x_fun (param* ) : List<srt > {

var y : List<srt > := [];
for(x : srt in e2 where e3 order by e4 )

{ y.add(e ); }
return y; } } ]|

Fig. 7. Local-to-global syntactic normalization.

this manner are merged
into the model during the
merge-emitted-decs gener-
ator stage. (A pattern also
applied in the form of par-
tial classes during code gen-
eration).

In a global-to-local trans-
formation, constructs are lo-
cally transformed using (glo-
bal) context information.
The typechecking rules in
the previous section are an example. Another example is the expansion (inlining)
of user-defined templates by the expand-page-templates strategy. It collects
top-level and local template definitions and replaces calls to these template def-
initions by their bodies, substituting actual parameters for formal parameters.
This mechanism allows WebDSL developers to capture reoccurring patterns in
page definitions for reuse.

5.2 Generative Abstractions

DeriveInput :
|[ input(e){} ]| ->
|[ select(s : srt, "Select", e) ]|
where SimpleSort(srt) := <get-type> e

; <defined-entity> SimpleSort(srt)
DeriveOutput :

|[ output(e){} ]| ->
|[ navigate(x_view(e)){text(e.name)} ]|
where SimpleSort(s) := <get-type> e

; <defined-entity> SimpleSort(s)
; x_view := <view-page-for-entity> s

Fig. 8. Type-based derivation.

Generative abstractions are abstractions
that explicitly invoke the generator to
derive some functionality. Here we dis-
cuss an example of type-based deriva-
tion. Consider the edit page in Fig. 9,
which provides an interface for edit-
ing the values of the properties of a
BlogEntry. Depending on the type of
the property, a different interface ele-
ment is used; a simple string input box
for title, a select box for author, and a text area for content. The definition
of the edit page in Fig. 9 simply invokes input(e.prop ) to declare an edit in-
terface for property prop . The specific implementation for each input type is
derived from the type of the expression. For example, the DeriveInput rule in
Fig. 8 derives for an input of a property with a ‘defined entity’ type a select box
for that type. Similarly, the DeriveOutput rule derives a rendering mechanism
for an expression based on its type. For example, the use of output(e.author)
in a page definition results in a link (navigate) to the view page for the object
that is referred to by e.author. The e.author.name property of that object is
used as anchor for the link.

The next step in generative abstraction is the generation of complete page
definitions. The structure of an edit page can often be fairly straightforward, say
a table with a row for each property with an appropriate input interface. Such a
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define page editBlogEntry(e : BlogEntry) {
section {

header{"Edit blog entry "output(e.title)}
form { table {

row { "Title:" input(e.title) }
row { "Author:" input(e.author) }
row { "Content:" input(e.content) } }

action("Save", save())
action save() {

e.save(); return blogEntry(e);} } } }

define page editBlogEntry(e : BlogEntry) {
derive editPage for e from BlogEntry }

Fig. 9. Screenshot of an edit page with low-level and high-level page definition.

derive-page :
|[ derive editPage for x from srt ]| ->
|[ section{ header{"Edit " srt " " text(x.name)}

form { table { row* }
action("Save", save()) } }

action save() {
x.save(); return x_view (x ); } ]|

where x_view := <decapitalize-string> x
; prop* := <entity-properties> srt
; row* := <map(derive-edit-row(|x ))> prop*

derive-edit-row(|x ) :
|[y k srt (anno* )]| -> |[row{x_text input(x.y )}]|
where x_text := <concat-strings> [x , ": "]

Fig. 10. Rules to derive edit page elements

structure can be derived auto-
matically from the declaration
of the entity. The implementa-
tion of editBlogEntry in the
lower right of Fig. 9 uses the
derive construct to automat-
ically generate the implemen-
tation of the body of the edit
page from the BlogEntry en-
tity. The derive-page rule in
Fig. 10 implements this deriva-
tion. The rows of the table are generated by a map of the derive-edit-row
transformation over the properties of the entity srt , which are obtained by
applying the dynamic rule entity-properties.

5.3 Restoring Annotations

webdsl-to-seam =
import-modules ; typecheck
; normalize-syntax ; typecheck
; expand-page-templates ; typecheck
; derive ; typecheck
; merge-emitted-decs
; generate-code
; merge-partial-classes
; output-generated-files

As a model undergoes transformation, type
annotations may be lost. Rewrite rules may
introduce new variables or entire fragments
of code that do not include type annota-
tions. For example, the derive-edit-row
rule in Fig. 10 does not attach a type an-
notation to the expression of the input el-
ement it generates. Defining the rules to create correct type annotations would
be quite tedious and would require duplication of the knowledge encapsulated
in the typechecking rules. Following the principle of separation of concerns, the
typechecking rules are used to introduce type annotations in freshly generated
code. A question then is what the granularity of applying typechecking rules
should be. Since the type checker is currently defined as a complete traversal
over the model, reapplying the type checker after each application of a trans-
formation rule would be prohibitive. Instead, we take a rather course grained

Code Generation by ModelTransformation SERG

10 TUD-SERG-2008-012



approach, re-applying the type checker after each transformation stage, as illus-
trated in the strategy above. This strategy requires these stages to be designed
such that no transformation opportunities are missed by missing type annota-
tions. Combination of analysis and transformation in an efficient way is a topic
for research; it would be desirable to automatically infer an optimal incremental
analysis strategy.

6 Transformation Modularity and Extensibility

Derive :
|[ input(e ){} ]| -> |[ inputDate(e ){} ]|
where SimpleSort("Date") := <type-of> e

Derive :
|[ output(e ){} ]| -> |[ outputDate(e ){} ]|
where SimpleSort("Date") := <type-of> e

GenerateXML :
.. generate xhtml controls for
inputDate and outputDate ...

GenerateJavaExpr :
|[ Date(d ) ]| ->
|[ org.webdsl.tools.Utils.parseDate(e1 ) ]|
where e1 := <expression-to-java> d

GenerateJavaExpr :
|[ now() ]| -> |[ new java.util.Date() ]|

Fig. 11. Modular definition of the primitive
type Date.

Since its conception, the WebDSL gen-
erator has grown more and more com-
plex. Initially, the generator was con-
structed in a centralized fashion, with
a single “God rule” associated with
each generated artifact. Much like a
“God class”, an anti-pattern in object-
oriented programming, such a God
rule dispatches a large number of
smaller transformation rules to gener-
ate a monolithic target artifact (e.g.,
a Java class). As new language exten-
sions were added, these rules grew to
a size that they would no longer fit on
a single screen. As such, this pattern
was quickly identified as a code smell
that hindered the extensibility and maintainability of the generator.

The employment of God rules was the unfortunate result of the structure
of the target metamodel: Java provides only limited means of modularization
of classes. Other platforms, such as C#, offer partial classes (but not partial
methods), that can help further subdivide classes into smaller units. The lack
of such a construct makes it difficult to decompose rewrite rules that generate
large classes. This platform limitation can be resolved by extension of the target
language, in the form of partial classes and methods. In a separate generator
stage (expand-partial-classes), all partial classes and methods are merged
for processing with a regular Java compiler.

To support both modularity and extensibility of transformation definitions,
Stratego provides the notion of strategy and rule definition extension. Strategies
and rules can be extended by declaring a new instance with the same name.
All such definitions are merged together, and evaluated in an unspecified order
when invoked, until one of the definitions succeeds or all fail. The different stages
of the generator make use of this facility, by defining rules that are extended in
separate transformation modules. For example, Fig. 11 shows an implementation
of an extension of WebDSL with a Date value type that makes use of this facility.
It extends the definition of the Derive rule used in the derivation stage, and a
number of rules in the code generation stage. (Not shown here are the mappings
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to the Java Date type and the corresponding JPA annotations.) Another, more
elaborate extension that has been implemented is the addition of access control
constraints to the model, which is outside the context of this paper.

Fig. 12. Dimensions
of modularity.

As seen in the preceding section, transformations
for an aspect of the generator can be divided into differ-
ent stages. This vertical modularity helps in separation
of concerns and retargetability. Further modularity can
be achieved in a second dimension, by subdividing rules
that operate on a single level. This is a form of hori-
zontal modularity and is supported by rule definition
extension and generation of partial artifacts. Horizon-
tal modularity is essential for the extensibility of the
generator. Fig. 12 illustrates the two dimensions of the
transformation architecture. Highlighted is a horizontal
extension of the generator (such as the Date extension),
which consists of a number of vertical transformation
stages.

The definition extension feature of Stratego elegantly combines rewrite rules
that operate on different elements of a source model. However, it will only eval-
uate a single rule if multiple rules are applicable to the same element (e.g., a
page parameter that has different rules to generate Java and JSF code for the
same page parameter). While Stratego does not offer a direct facility for this, we
build upon the notion of strategy extension to accomplish this, as shown below.

GenerateCode =
page-to-java; fail

GenerateCode =
parameter-to-bean-property; fail

By use of a fail statement at the end of
each definition of GenerateCode, all alterna-
tives will “fail”, ensuring each will be tried.
The result of the applications can then be collected as a side effect using dynamic
rules (e.g., using emit-java-code in Fig. 3). This pattern efficiently achieves the
desired composition of definitions. Direct language support and accompanying
compile-time checks for this within Stratego could prove useful, and could pre-
vent subtle bugs that may occur if an extension programmer now forgets to
include fail at the end of a definition, or mistypes its name.

7 Discussion

Since the advent of model-driven engineering, several modeling methodologies
and model transformation approaches have been introduced. A classification of
a number of such systems is given in [7]. Various MDE toolkits provide model
transformation and code generation facilities, many of which are based on OMG’s
MDA (openArchitectureWare [8], AMMA [12], AndroMDA [2]). These generally
consist of a metamodeling language (MOF [16], Ecore, KM3 [9]), model trans-
formation language (ATL [11], xTend [8]), code generation language (TCS [10],
xPand [25], Velocity [19]), and a language to define the sequence of transforma-
tions (oAW’s workflow language, Groovy scripting language).

Code Generation by ModelTransformation SERG

12 TUD-SERG-2008-012



Model management can be based on any algebraic datastructure such as
trees, graphs, hypergraphs, or categories [4]. Most current MDE toolkits are
based on graphs, while Stratego/XT uses trees. By combining trees with dynamic
rules, graphs can be represented in Stratego, which makes it possible to model
context-sensitive information that cannot easily be expressed using just trees.

Consistency management is an important issue in MDE [14]. It is possible
to keep models consistent as part of transformations, but in practice this also
tends to make transformations much more complex. In our approach we chose
to separate the concern of typechecking from the model transformation at hand.
The drawback of this approach is that models need to be reanalyzed after apply-
ing transformations. Incremental analysis and transformation techniques are an
important research topic. By analyzing models before any transformations are
performed, we detect inconsistencies early and can report them to the developer.
However, problems that occur while the system is running turn out to be difficult
to trace back to errors in the model. In the future, we intend to investigate the
feasibility of origin tracking [20] to achieve code-to-model traceability.

Transformation languages such as ATL and xTend allow transformations to
be separated in modules, similarly to Stratego. However, extensibility of transfor-
mations is more difficult to realize, especially if transformation extensions have to
operate on the same modeling elements, which is forbidden in ATL, for instance.
In existing MDE toolkits, vertical modularity in transformations is often real-
ized using a separate workflow language, such as the oAW workflow language and
Groovy in AndroMDA. Stratego not only integrates model-to-model and model-
to-code transformations, but also the overall generator workflow. Thus, a single
transformation composition language is used for micro and macro compositions.

Some approaches [26] generate partial artifacts through the use of partial
classes, which are then combined by the regular compiler for the target language.
However, these approaches only work if the target language supports these fea-
tures. In our approach, code is treated as a model, while most MDE approaches
generate code through the use of textual template engines, which produce plain
text, not amenable to further transformation. By treating generated code as a
model, it is possible to extend the target language and add convenient language
features such as partial classes and methods, and interface extraction.

Many (visual) languages for modeling web applications have been developed,
including WebML [13], MIDAS [17], OOWS [15], Netsilon [18], and UWE [1].
UWE generates JSP code via a model representation conforming to a JSP meta-
model. Netsilon uses an intermediate language for code generation in order to
increase retargetability of the generator. The other approaches use textual, usu-
ally template-based code generation.

8 Conclusions

In this paper we presented a case study of the code generation by model trans-
formation approach applied in the development of WebDSL. WebDSL is a sub-
stantial DSL code generator, consisting of a total of 1300 rules and strategies
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(see Fig. 13). It has been employed for a number of web applications, most sig-
nificantly the webdsl.org project website (which is currently used in production).
The site features a generic project management interface, including a wiki-based
documentation system, an issue tracker, blogs, and discussion forums. Fig. 13
gives an indication of the scale of the project: it is defined using 146 page and
entity definitions, written in a total of 2366 lines of text. The code generated from
these definitions spans nearly 80.000 lines of code. Even if this is not the volume
of code one would produce manually for such an application, it seems justified
to conclude that an order of magnitude reduction in code can be achieved. As
such, we believe that employment of the WebDSL generator enables a significant
gain in productivity, resulting from the high level of abstraction it provides.

134 Modeling elements

103 core model elements

1298 Rules and Strategies

459 in code generation stage
318 in model-to-model stage
277 in typechecking
126 rules for access control

webdsl.org application

2366 lines in webdsl.org model
38395 lines of generated Java code
39216 lines of generated JSF code

Fig. 13. WebDSL statistics

We have shown how a pipeline of model-
to-model transformations helps achieve high-
level abstractions in models. By apply-
ing two-dimensional modularity—vertically
in stages and horizontally in a core language
and extensions—we ensure maintainability
and extensibility of the generator. We have
also demonstrated the benefits of generating
models, rather than text, and how this tech-
nique aids horizontal modularity. The modu-
lar design of WebDSL provides a solid foun-
dation for further research into higher-level
domain-specific abstractions for web-based
software systems. The approach should also be usable in the implementation
of other DSLs. The approach can be further improved by research into incre-
mentality of analysis and transformations, and the application of origin tracking.
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