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“So switching to another 
platform is just a little 

matter of switching the 
backend, right?”

(wrong)



Why not?

•platform-exclusive libraries

•platform escapes and native calls

• interoperability and integration with 
platform applications

•performance and stack behavior



Then what?

Use aspect weaving to address portability 
issues in programs and libraries!
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1. Glue code aspects

Override functions and library invocations

to work with platform-specific libraries 

• SGLR vs. JSGLR

• ORM

• communication

• etc.



2. Migration aspects

Because we cannot solve all portability 
problems (right away)

• There may be no alternative for a library

• Primitives may make assumptions about 
the platform (e.g., POSIX vs. Java)



2. Migration aspects

Warn developers about unportable code

Perform “next best” operation



3. Integration aspects

Enhance platform integration:

•error handling (exceptions, console vs. GUI)

• logging

•hooks

•user interaction (console vs. GUI vs. web)



4. Optimization aspects

Address platform performance issues of...

...expensive operations

...common operations (bottlenecks)

      by using platform-specific code

or by using code more suited for the platform



Summary

Many additional portability issues

•replacing the backend is not enough!

AOP elegantly addresses them

• four classes of portability aspects 

•encapsulate platform concerns in 
separate libraries


