
Using Aspects for
Language

Portability

Eelco VisserLennart Kats

DSLs

Stratego

SDF

Spoofax

DSL compilers
(code generators)

GeneratorDSL

Frontend BackendDSL

Backend targets the
platform

DSL Frontend Backend

s

Backend

Backend

Backend targets the
platform

“So switching to another
platform is just a little

matter of switching the
backend, right?”

(wrong)

Why not?

•platform-exclusive libraries

•platform escapes and native calls

• interoperability and integration with
platform applications

•performance and stack behavior

Then what?

Use aspect weaving to address portability
issues in programs and libraries!

Frontend Backend

Backend

Our case study

Stratego/XT

C/POSIX

(spoofax.org)

Why Java?

Primitives

Platform libsBackend

Architecture

Standard libs

Programs

Frontend

Backend

Primitives

Platform libs

Portability
aspects

1. Glue code aspects

Override functions and library invocations

to work with platform-specific libraries

• SGLR vs. JSGLR

• ORM

• communication

• etc.

2. Migration aspects

Because we cannot solve all portability
problems (right away)

• There may be no alternative for a library

• Primitives may make assumptions about
the platform (e.g., POSIX vs. Java)

2. Migration aspects

Warn developers about unportable code

Perform “next best” operation

3. Integration aspects

Enhance platform integration:

•error handling (exceptions, console vs. GUI)

• logging

•hooks

•user interaction (console vs. GUI vs. web)

4. Optimization aspects

Address platform performance issues of...

...expensive operations

...common operations (bottlenecks)

 by using platform-specific code

or by using code more suited for the platform

Summary

Many additional portability issues

•replacing the backend is not enough!

AOP elegantly addresses them

• four classes of portability aspects

•encapsulate platform concerns in
separate libraries

