
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Encapsulating Software Platform Logic by
Aspect-Oriented Programming:

A Case Study in Using Aspects for
Language Portability

Lennart C. L. Kats, Eelco Visser

Report TUD-SERG-2010-019a

SERG



TUD-SERG-2010-019a

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Lennart C. L. Kats, Eelco Visser. Encapsulating Software Platform Logic by Aspect-Oriented Program-
ming: A Case Study in Using Aspects for Language Portability. In Cristina Marinescu, Jurgen J. Vinju,
editors, Proceedings of the Tenth IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM 2010). IEEE, 2010.

@inproceedings{KatsVisser-SCAM-2010,
title = {Encapsulating Software Platform Logic by Aspect-Oriented Programming:

A Case Study in Using Aspects for Language Portability},
author = {Lennart C. L. Kats and Eelco Visser},
year = {2010},
booktitle = {Proceedings of the Tenth IEEE International Working Conference

on Source Code Analysis and Manipulation 2010},
editor = {Cristina Marinescu and Jurgen Vinju},

}

c© copyright 2010, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.



Encapsulating Software Platform Logic by Aspect-Oriented Programming:
A Case Study in Using Aspects for Language Portability

Lennart C. L. Kats
Software Engineering Research Group,

Delft University of Technology, Delft, The Netherlands
Email: l.c.l.kats@tudelft.nl

Eelco Visser
Software Engineering Research Group,

Delft University of Technology, Delft, The Netherlands
Email: visser@acm.org

Abstract—Software platforms such as the Java Virtual Ma-
chine or the CLR .NET virtual machine have their own
ecosystem of a core programming language or instruction set,
libraries, and developer community. Programming languages
can target multiple software platforms to increase interoper-
ability or to boost performance. Introducing a new compiler
backend for a language is the first step towards targeting
a new platform, translating the language to the platform’s
language or instruction set. Programs written in modern
languages generally make extensive use of APIs, based on the
runtime system of the software platform, introducing additional
portability concerns. They may use APIs that are imple-
mented by platform-specific libraries. Libraries may perform
platform-specific operations, make direct native calls, or make
assumptions about performance characteristics of operations
or about the file system. This paper proposes to use aspect
weaving to invasively adapt programs and libraries to address
such portability concerns, and identifies four classes of aspects
for this purpose. We evaluate this approach through a case
study where we retarget the Stratego program transformation
language towards the Java Virtual Machine.

Keywords-programming languages, compilers, aspect-orien-
ted programming, Stratego, Spoofax, Java

I. INTRODUCTION

Programming languages form layers of abstraction over
low-level machine code. High-level programming languages,
especially those aimed at a particular domain, target a lower-
level programming language and an API in that language.
That is, rather than targeting a particular hardware platform,
they target a software platform. A software platform con-
sists of one or more programming languages, application
frameworks, and libraries, and can be used on one or more
hardware platforms. By targeting software platforms in high-
level languages, their design and implementation can benefit
from the abstractions available on such a platform [20].
Examples of software platforms are the Java and .NET
platforms, LAMP1, and C with the POSIX library. Each
platform has its own ecosystem of programming languages,
libraries, and developer community.

For programming language designers, targeting multiple
software platforms can be appealing for many reasons. Do-

1Linux, Apache, MySQL, and Perl/PHP/Python.

ing so may allow the language to run on different hardware;
can make integration with existing software such as the
Eclipse IDE on Java possible; it may improve performance,
as seen with JRuby [14] and IronPython [6] at different
points in time. A new platform may also attract a different
developer community. Altogether, targeting a new platform
with a language can be a rewarding endeavor.

Programming languages are typically implemented using
a frontend/backend architecture that aids in retargetability: a
new backend can be added to generate code using a language
or instruction set supported by the platform. However, this
only addresses portability concerns at the bottom layer of
the technology stack provided by a software platform.

Programming languages can also abstract over the layer
of software (libraries) provided by a platform, in particular
to provide domain-specific functionality [20]. Libraries may
perform platform-specific operations, make direct native
calls, or make assumptions about performance characteris-
tics of operations or about the file system. Some libraries
are only available for selected platforms. For example, if
a web programming language uses the Java-based Hiber-
nate framework in its implementation, some equivalent is
required to implement the language on another platform.
These platform dependencies are exposed to programs either
directly through the runtime system of the language, or
indirectly through standard functions or libraries written in
the language. This means that programs can become tied to
a particular platform, regardless of the compiler architecture.

Another area that requires attention when targeting a new
platform with a language is interoperability with existing
applications and libraries on the platform. Care should
be taken to address platform idiosyncrasies such as event
handling models and exception handling. For example, in C
when some error condition arises, an application could log
a message to the console and quit with a non-zero exit
code. But for other platforms throwing an exception instead
could increase interoperability with other applications. For
example, when embedded in a GUI application, a popup
could be shown.

Portability concerns at the library level can be addressed
by modifying libraries and programs written in the source

SERG Encapsulating Software Platform Logic by Aspect-Oriented Programming

TUD-SERG-2010-019a 1



language, introducing changes to match the new platform
or to abstract over the original platform. To avoid having to
fork the sources and having to maintain multiple copies,
conditional compilation can be used. Using conditional
compilation, sources can be statically configured by a set
of compiler flags that enable or disable logic for specific
platforms. The most straightforward way of conditional
compilation is to use a preprocessor. Preprocessors directly
manipulate text and ignore the base language’s syntax rules.
This practice makes it much harder for various tools – IDEs,
code analyzers, etc. – to process the code. Alternatively, true
static conditional language constructs can be added, but they
still complicate reasoning about the language and supporting
it in tools. Moreover, using any form of conditional compi-
lation also leads to tangling and scattering of platform logic
throughout the base source code.

Instead of conditional compilation, this paper proposes
to use aspect weaving [12] to address library-level porta-
bility concerns of programming languages. Using aspects,
portability concerns can be expressed separately, rather than
scattering them across the base source code. By using load-
time aspect weaving, the base source code can be separately
compiled and invasively adapted with platform-specific
changes. A minimal join point model and before/around
advice suffices to make such changes to libraries.

To evaluate this approach, we report on our experience in
retargeting the Stratego program transformation language [3]
to Java. The language has originally been compiled to C
and is associated with the GNU/Linux operating system;
we evaluate how aspects can be used to address portability
concerns when targeting the Java platform instead. Previous
experience with the Stratego interpreter for Java has shown
that targeting the platform has a number of appealing appli-
cations, such as integration with compiler frontends written
in Java to support transformations [9], and integration into
the Eclipse IDE [10]. The present work improves the level of
integration with such tools and allows Stratego programs that
originally targeted the C platform – rather than specialized
programs making use of Java-based libraries – to be used
on Java and in Eclipse.

Stratego does not support aspect-oriented programming
out of the box. Few languages do. In general, some form
of aspect weaving must be added to the language for our
approach to be effective. For our study, we introduced aspect
weaving facilities to the language. Our results indicate that a
minimal, lightweight set of aspect weaving features suffices
to address portability concerns. Using load-time or run-time
weaving, these features are straightforward to implement and
support separate compilation.

Using aspect-oriented programming rather than condi-
tional compilation, we can adapt the Stratego standard li-
brary without having to directly change the original code; the
C and Java implementations remain truly separate. Existing
Stratego programs that were designed for use on the C plat-

form can be compiled to Java without requiring their sources
to be changed. Java-specific adaptations are generally only
needed in Stratego libraries, and can be expressed entirely
using aspects.

This paper proposes the use of aspects to address language
portability concerns. To this end, we:

• identify four classes of aspects to address portability
concerns: glue code, migration, integration, and opti-
mization aspects;

• describe a minimal, lightweight form of aspect weaving
required to implement these aspects; and

• implemented a Stratego-to-Java compiler2 to evaluate
our approach, showing instances of all four classes of
portability aspects.

We begin this paper by discussing general goals, design
principles, and typical challenges faced in porting a language
to multiple software platforms. We then discuss classes
of aspects that can be used to meet these challenges. In
Section III, we describe the Stratego language, the current
compiler design, and introduce our extension of Stratego
with aspects. Section IV shows portability problems in
retargeting Stratego, and how these can be addressed with
aspects. We discuss our results in Section V.

II. TARGETING MULTIPLE SOFTWARE PLATFORMS

When targeting a different software platform with a
language, there are a number of general goals that guide
the design and implementation of such an effort. First,
existing applications should run on the new platform with
no or minimal changes. Second, any libraries written in
the language should be reused. Unlike normal applications,
libraries – especially those bundled with the language –
often use low-level, primitive operations. If that is the
case, a number of platform-specific changes must be made
that are not exposed in the API. Third, integration with
other applications, frameworks, and languages on the target
software platform is a key part of the retargeting effort.

Well-known design principles of portable language imple-
mentations are the use of a frontend/backend architecture
and a runtime system that provides a set of primitives that
abstract over the platform. These ensure that a new platform
can be targeted by reusing the frontend and interface for the
runtime system, while replacing the backend and implemen-
tation of the primitives.

A. Language Portability Concerns

Based on the general design principles for portable com-
piler language implementation, a compiler backend can be
created that emits code for a particular platform, along with
a runtime system that supports it. In practice, however,
a new backend and runtime system do not automatically
constitute language portability. Many applications, libraries,

2Available from http://www.strategoxt.org/Stratego/STRJ.

Encapsulating Software Platform Logic by Aspect-Oriented Programming SERG

2 TUD-SERG-2010-019a



and sometimes the compiler itself, have been written with
a particular platform in mind, making certain assumptions
and showing behavior only appropriate for that particular
platform. These library-level portability concerns cannot be
addressed by the compiler and runtime alone, and require
changes to the code base written in the language. In this
section, we outline different sorts of these concerns. We
revisit them in Section IV, showing concrete cases for the
Stratego language.

Platform-specific libraries: High-level languages, par-
ticularly those that target a specific domain, are often im-
plemented by providing a linguistic abstraction over high-
level frameworks or libraries. These libraries are tied to a
particular software platform. For example, consider the Hi-
bernate framework for Java. There are many popular object-
relational mapping (ORM) frameworks for other platforms,
but their semantics differ slightly.

When a library is not supported on a particular platform, a
similar, alternative library may be available that can be used
instead. Using glue code, it may be feasible to adapt it to
the same basic interface of the reference library. Glue code
is code that does not directly contribute any functionality
towards meeting the program’s requirements, but serves
solely to “glue together” different parts of code, helping
programs and libraries interoperate.

Platform escapes and native calls: Escapes to code
written in the host language (e.g., C) can introduce portabil-
ity concerns as the code escaped to typically does not run
on another platform. For other platforms, an alternative must
be implemented. Ideally, code in the retargeted language –
in our case study, Stratego – should be used instead. If this
is not possible, the escaped code should be added to the set
of primitives of the language, allowing different platforms
to provide their own definitions.

Similar to escapes to platform code, native calls to other
programs that run on the platform introduce a number of
portability problems, as they add dependencies to external
programs that may not be available on other hardware
architectures or operating systems. Some platforms simply
may disallow the use of native calls, or do not bundle
required external programs. Rather than making direct native
calls, a more portable approach is to use libraries where
possible. They have an interface that is less dependent of the
operating system, file system, and path configuration used
for the software platform.

Interoperability and integration with platform applica-
tions: A strong motivation for targeting a particular platform
can be to integrate the programs in the retargeted language
with applications and libraries that run natively on the
target platform (e.g., Eclipse on Java). Key to integration
is a good interface for interoperability between the different
languages. The public API of a generated application should
be human-readable and easy to use. Advanced language
features should be mapped to corresponding features on the

platform. For instance, the Scala language targets the JVM
and exposes advanced language features such as traits as
standard Java interfaces for interoperability [15]. In addition
to the basic API interface, important notions for interop-
erability are event models and exception handling. Events
and exceptions are particularly important when embedding
programs written in a language traditionally used for batch
processing, such as Stratego.

Performance and stack behavior: Software platforms
may use different libraries, a different language, and a
different runtime system (e.g., the JVM), leading to different
performance characteristics. On some platforms, performing
an operation one way may be faster, while on other plat-
forms, doing it another way is faster. High-level operations
cannot be easily optimized by the compiler, as they may
need to be changed at the algorithmic level.

Stack size constraints of the JVM are a notorious problem
for running functional languages on the JVM, as they
typically do not have explicit looping constructs but use
recursion to perform loops [18]. Our case study of Stratego
forms no exception in this regard. The stack consumption of
recursive looping is linear to the amount of loops performed,
whereas it remains constant for iterative loop constructs such
as the “for” loop, typically used in Java programs. The max-
imum stack size cannot be changed at run-time, only when a
new JVM is created, which may not be possible or desirable
in all environments. A common approach to thwart stack
consumption is the use of tail recursion elimination [18],
but for indirect or non-tail recursion the prevailing solution
is to use a non-recursive or tail-call based implementation
instead.

B. Aspects to Address Language Portability Concerns

We identify four classes of aspects to address such con-
cerns such as those listed in the previous subsection:

Glue code aspects add glue code to help compatibility
with platform-specific libraries. Glue code written in the
retargeted language itself is often more concise and high-
level than wrappers at the platform level. Glue code aspects
may be transitional; as libraries are ported to a platform,
some additional glue code may be used to help compatibility.

Migration aspects help developers in retargeting their
applications to a different platform. Typical use cases include
platform escapes and native calls, which hinder portability.
These aspects may either passively display warnings or
errors for developers that use operations not (fully) sup-
ported on a platform, or they may actively aid the developer,
redirecting such operations to alternatives that are supported
on a platform but may not be fully compatible with the
original operations. For example, if a language relies on
Java serialization, on another platform it may implement
serialization by use of an alternative API.

Integration aspects aid in interoperability and integration
with other languages on the platform. For example, they can

SERG Encapsulating Software Platform Logic by Aspect-Oriented Programming

TUD-SERG-2010-019a 3



add exception handling or throwing to functions written in
the retargeted language, or they can add application-specific
hooks for use by other software on the platform.

Optimization aspects address run-time performance and
scalability concerns. They change definitions in applications
or libraries in order to achieve better performance for a
particular platform, or to avoid platform restrictions such as
stack size overflows resulting from uses of deep recursion
on the JVM.

After introducing the Stratego language and our extension
with aspects in the following section, we show concrete
example use cases these of aspects in Section IV.

III. MODULARITY AND ASPECTS IN STRATEGO

In this section we first briefly introduce the Stratego
language, and then present the design and implementation
of an extension of Stratego with a minimal set of aspect
weaving facilities. For a comprehensive description of the
Stratego language, we refer the reader to [3].

Stratego is a domain-specific language for program trans-
formation, used to build tools such as compilers, static
source code analyzers, and interpreters. Together with the
XT set of tools, Stratego/XT can be used for building
comprehensive, stand-alone program transformation tools.
The most important of these tools are the ATerm exchange
format [2] and SDF/SGLR [22], both of which have been
reimplemented in Java. As a bootstrapped language, the
Stratego compiler is implemented in Stratego itself.

At its base, Stratego is a term rewriting language. Using
a first-order term representation of (abstract syntax trees
of) programs of a given language, programmers can define
rewrite rules to transform programs. As a basic example,
the following is the definition of a single rewrite rule that
desugars a one-armed “if” statement with a condition e and
a body stm to a two-armed “if” statement:

desugar-java:
If(e, stm) → If(e, stm, Empty())

Whereas most term rewriting engines use a fixed (innermost)
strategy for rewriting, Stratego allows the definition of cus-
tom rewriting strategies. Strategies are a generic description
of how a rule or series of rules should be applied. They may
be application-specific, or can be independent of a particu-
lar subject language and application; the Stratego standard
library defines a large set of useful, generic strategies.

A. Modularity and Extensible Definitions

Stratego’s module system uses hierarchical modules that
correspond to files relative to the set of import paths.
Stratego uses a flat namespace, and allows multiple defi-
nitions of rules and strategies with the same name. These
can be defined within a single module or across multiple
different modules. For example, one module may define
multiple desugar-java rules related to control-flow fea-
tures, while another module may define desugaring rules

for other language features. All definitions for a rule or
strategy are merged together, in a fashion similar to open
classes or multimethods: when called, the first successful
matching definition is dispatched. The traditional, whole-
program compilation scheme of Stratego does not support
extension of definitions that have been compiled separately.

B. Introducing Aspect-Oriented Programming to Stratego

While the Stratego language as it is offers a powerful
mechanism for extending existing definitions, this mecha-
nism is not sufficient to express the portability aspects we
described in Section II-B. The mechanism cannot be used to
adapt definitions in external libraries without having to “re-
compile the world,” and can only be used to introduce new
definitions that are independent of the existing definitions.
For example, a new rule may be added that desugars the
“for” statement, but the rule for the “if” statement cannot
be adapted. It is also not possible to introduce pre-conditions
to existing rules, add logging messages, or pre-process the
input terms that are processed by rewrite rules.

In previous work, Kalleberg and Visser introduced As-
pectStratego [8], an extension of Stratego with a full-
featured aspect language. However, since it was based on
source-level aspect weaving, it cannot be used to weave
into separately compiled libraries. Weaving into separately
compiled libraries can only be supported by weaving into
compiled code or through load-time or run-time weaving.
Load-time and run-time may be the options of choice for the
purpose of addressing portability concerns as they require
comparatively little implementation effort.

In the present paper we introduce a new extension of
Stratego based on load-time weaving, supporting basic be-
fore/after/around advice. In our extension we define a new
set of modifiers that refine Stratego’s definition extension
mechanism and give control over definitions in separately
compiled libraries. These modifiers are extend, which ex-
tends an external definition; override, which overrides an
external definition; and internal, which indicates that a
definition should be closed to extension and must not be
exported to other libraries. We also introduce the proceed

keyword, familiar to that of some more conventional aspect
languages, which allows advice to return control back to the
intercepted code.

As an introductory example, we can add – perhaps a cliché
– logging messages to the desugar-java rule from the
beginning of this section:

override desugar-java =
log(|Info(), ["Desugaring: ", <id>]);
proceed

Note that we do not syntactically separate the definition
of the join point and the advice. This particular aspect
specifies a join point matching any strategy or rule named
desugar-java with zero arguments. When needed, join
points can use wild cards: a pattern desugar-* would match

Encapsulating Software Platform Logic by Aspect-Oriented Programming SERG

4 TUD-SERG-2010-019a



Figure 1. The basic architecture of the Stratego-to-C and Stratego-to-Java
compilers, each compiling to core Stratego and then to the target language.
The new Java compiler supports Stratego with aspects (Stratego′).

any rule with the prefix desugar-. The aspect also specifies
“before” advice that prints a message with the current term
(i.e., <id>) for every invocation of desugar-java. We do
not distinguish between “before” and “after” advice in the
language: instead, we use the standard Stratego operators to
combine the definitions. This example uses the sequence op-
erator (s1; s2), which specifies that first statement s1 should
be executed, and, if successful, then s2 should be executed.
Other operators include conditionals, and (non)deterministic
choice between different strategies.

C. Implementation of Aspects in Stratego

To implement aspect weaving in Stratego, we must add
the new syntactic constructs to the front-end, and adapt the
back-end to generate code for the new features (Figure 1).
We implement aspects by generating standard Java source
code. Since our join point model is relatively simple, this
requires only a modest extension of the compiler. In general,
generating code to a language that directly supports aspects
– such as AspectJ [11] – may be easier, but in this case
we want to avoid introducing a dependency to the AspectJ
compiler.

The Stratego frontend merges all rules and strategies
with the same signature, as described in Section III-A.
The Java backend then compiles each definition to a single
class that inherits from the Strategy class. This class
defines a number of overloads of the invoke() method
with different parameters, and a dynamicInvoke() method
for invoking strategies with an unanticipated number of
parameters. Figure 2 shows the class that implements the
desugar-java rules.

Each strategy is implemented as a singleton class, and has
a mutable instance field. This field is used to invoke the
strategy or to pass it as the argument to a higher-order func-
tion, such as the strategy call topdown(desugar-java)

that applies desugar-java to a tree in a top-down fashion.
For strategies that are adapted by aspects, the instance

field is assigned to the instance of the adapted strategy.
For example, Figure 3 adds the logging advice from the
previous subsection to the class for desugar-java. Note

public class desugar_java extends Strategy {
public static desugar_java instance =

new desugar_java();

@Override
public IStrategoTerm invoke(..., IStrategoTerm term) {

IStrategoConstructor cons0 = term.getConstructor();
if (cons0 == DesugarJava._consIf2) {

Desugar the "if" construct
} else if (...) {

Apply other definitions of the desugar-java rule
} else {

return null; // rule application failed
}

}
}

Figure 2. The strategy class for desugar-java.

class desugar_java_override extends desugar_java {
private final desugar_java proceed =

desugar_java.instance;

@Override
public IStrategoTerm invoke(..., IStrategoTerm term) {

term = log.instance.invoke(context, ...);
if (term == null) return null;
return proceed.invoke(context, term);

}
}

Figure 3. A class overriding the desugar-java definition.

in particular that the proceed call in this definition is
defined by copying the instance field of the original
desugar_java class. When the library that contains the
override class is initialized, it simply reassigns the existing
instance field:

desugar_java.instance =
new desugar_java_override();

Multiple libraries may add advice to the same definition
in this fashion, following the order in which they were
imported. The proceed field always refers to the definition
that preceded the new advice, allowing multiple advice rules
to be combined.

IV. ENCAPSULATING PLATFORM LOGIC USING ASPECTS

In this section we elaborate on the concrete cases where
aspects can be used to express platform logic, following
the same structure as Section II-A. In total, we created
seven libraries with aspect definitions to address portability
concerns in different areas. Figure 4 illustrates the overall ar-
chitecture and interaction between the compiler and runtime
components.

A. Platform-Specific Libraries

On the C platform, Stratego uses the ATerm library [2] to
represent terms, and the scannerless generalized-LR SGLR
parser [22] for parsing. While a Java implementation of
the ATerm library exists, we use a more flexible library
that allows custom term library implementations based on
a fixed interface, making it possible to operate on arbitrary

SERG Encapsulating Software Platform Logic by Aspect-Oriented Programming

TUD-SERG-2010-019a 5



Figure 4. The role of aspects and the interaction between components
of Stratego on Java. Dependencies are indicated by solid lines; weaving is
indicated by a dashed line.

override parse-stream-pt(on-parse-error, ...) =
read-text-from-stream;
parse-string-pt(on-parse-error, ...)

override asfix-anno-location =
fatal-err(|"Not implemented on this platform")

Figure 5. Glue code aspects for compatibility with parsing on Java.

(wrapped) Java objects [9]. It supports the same basic op-
erations of the ATerm library, but has different performance
characteristics.

To parse files, we use JSGLR, a Java port of the SGLR
parser. At the time of writing, JSGLR supports most func-
tionality of SGLR, and – for the most part – is successful
in strictly following the SGLR semantics. However, JSGLR
is still under development, and during the construction of
the Stratego-Java compiler did not yet have the same API
as the C version. To address these issues, we defined some
transitional glue code aspects to address the incompatibilities
until the JSGLR interface further evolved.

Figure 5 shows two glue aspects related to the JSGLR
parser library. First, we defined an aspect that introduces a
bit of glue code for parsing of streams: to read the input
stream to a string we use the read-text-from-stream

strategy, and then call the JSGLR parser to parse
that string. We also added a migration aspect for the
asfix-anno-location strategy, which adds position infor-
mation annotations to parse trees, and is not (yet) supported
on Java. Some applications work regardless of the annota-
tions; they may redefine the strategy to report a warning
instead.

B. Platform Escapes and Native Calls

The Good: Stratego uses a runtime system with a well-
defined set of primitives, as advocated in Section II, to
implement primitives in the standard library that cannot
otherwise (or not efficiently) be implemented directly in
Stratego. These primitives can be invoked using the prim

language construct. For example, the standard library util-
ity strategy concat-strings concatenates strings, and is
implemented as follows:

concat-strings =
prim("SSL_concat_strings", <id>)

That is, the strategy calls a primitive by the name
SSL_concat_strings and passes it the input term <id>

of the strategy.
Stratego has a large collection of well over a hundred of

these primitives, most of which are straightforward to im-
plement in Java. A compiler (backend) for a given software
platform can recognize the prim constructs and translate
them to function calls for that particular platform.

The Bad: In addition to the prim construct, Stratego
also supports an external modifier to directly call custom,
native C functions, not unlike the native methods used in a
language like Java. Some Stratego applications use these as
optimizations or to interface with native libraries. There are
also some cases where escapes to platform code are made
from the standard libraries and compiler. Because of the
ad hoc nature of these functions – any application can define
and use their own native functions – native function calls
cannot be uniformly translated by a compiler.

As an example of an external strategy, consider the fol-
lowing definition that accesses a native pretty-printer (which
is faster than the table-based Stratego implementation), as
used in the Stratego C backend and some applications such
as WebDSL [23]. This particular pretty-printer prints Java
to a formatted text string:

external pp-java(|)

When Stratego runs on Java, the external C function is
not available. Using a runtime check or through conditional
compilation at the call sites, an appropriate alternative could
be called. Using aspect weaving instead, such changes can
be implemented without changing the original code – which
is undesirable for third-party libraries. All aspects dealing
with native function calls on Java can be collected together
rather than scattered throughout the code. For the case of
pp-java, we can simply add advice that calls the table-
based pretty printer instead:

override pp-java =
pp-java5-to-abox; box2text-string(|80)

The Ugly: Stratego programs have traditionally been
based on XTC, a library for creating monolithic transforma-
tion programs by composition of smaller tools, such as a
parser or a pretty-printer. XTC’s function in the Stratego
world has been to reconcile the philosophy of the Unix
platform of “tools that do one thing, and do it well” with
the need for comprehensive transformation tools. XTC main-
tains its own component model in a customizable location in
the file system, called the XTC repository. The repository is
used to store and retrieve file system paths to shared tools.
Using the xtc-command strategy, any of these tools can be
invoked with a given set of command-line options. "-o",
output]. XTC also provides a xtc-find strategy that has
been used to find the paths of parse and pretty-printing tables
used for an application, and for locating library headers for
use by the Stratego compiler.

Lately, XTC is being phased out in favor of libraries [3],
which are more efficient than forking a new process for

Encapsulating Software Platform Logic by Aspect-Oriented Programming SERG

6 TUD-SERG-2010-019a



override xtc-command(tool) =
if tool ⇒ "pp-java" then

directly pretty-print using pretty-printing library
else

proceed
end

override xtc-find =
warn-msg(|["XTC used to find non-local file ", <id>]);
id // don’t proceed with the original xtc-find

override fork(child) =
fatal-err(|"Not supported on this platform")

override call =
?(program, args);
log(|Info(), ["Calling external tool ", program]);
prim("SSL_EXT_call", program, args) ⇒ 0

Figure 6. Migration aspects related to native calls and XTC usage.

specific tasks. In addition to performance concerns, XTC
– and direct invocations of executables in general – also
hinders portability of applications that use it. On the Java
platform, invoking tools in this fashion is often not possible,
and using the file system for resources forms a mismatch
with the light-weight deployment system of using JAR files
for applications.

Figure 6 shows a number of migration aspects for run-
ning Stratego on the JVM. The first definition extends
xtc-command to redirect any calls to the command-line
pp-java tool to more portable strategies. Multiple, indepen-
dent extensions like it can be added for other invoked tools,
aiding in the portability of existing Stratego applications
that have not yet made the transition to libraries. We also
override the xtc-find strategy, which normally returns the
absolute path of a file using the XTC repository. This is an
example of a transitional migration aspect: we only display a
warning and do not call proceed, allowing the application
to continue in case the requested file simply exists in the
current directory or if it is an executable on the path.

Native executables can also be directly invoked using the
call strategy. Normally, call is implemented using the
fork strategy to fork the current process, but on Java no such
notion exists (although it could be simulated). Therefore, as
additional migration aspects, in Figure 6 we also override
fork to print an error, and redefine call using a new Java-
specific primitive, printing an informational message that
reminds developers they are calling a native executable.

The Stratego compiler normally uses library definitions
that use XTC to find header files for imports. On Java,
headers should be distributed inside the compiler’s JAR file
instead. They can be automatically embedded using Strat-
ego’s import-term construct. The import-term construct
is also available on the C platform, but has significantly
different performance characteristics, inflating compilation
times and executable sizes as they are serialized to array
literals in C. Using separate aspect definitions ensures that
only on Java import-term is used to retrieve headers.

extend pack-stratego-parse-stratego:
(IncludeFromPath(name), includes) → ("", ast)
where

switch !name
case "libstratego-lib": import-term(headerfile )
case "libstratego-xtc": import-term(headerfile )
case ...

end ⇒ ast

extend pack-stratego-parse-stratego:
(IncludeFromPath("libjava-front"), includes) → result
where

if not(proceed ⇒ result) then
result := ("", <import-term(libjava-front.rtree)>)

end

override strc-get-include-dirs =
<get-config> "-I"

Figure 7. Migration aspects for XTC usage for Stratego compilation.

Figure 7 shows the aspects that introduce import-term

calls to the pack-stratego-parse-stratego. The first
aspect fetches headers of the standard libraries. These are all
tied to the version of the compiler and cannot be overridden.
The second aspect retrieves the headers for the Java-Front
library, which may be overridden with a different version by
the user. The third aspect in Figure 7 ensures that any third-
party library headers are not loaded using XTC, but only
from the directories specified with the “-I” command-line
option.

C. Interoperability and integration with Java applications

So far, we have already shown a number of ways in
which direct interoperability between compiled Stratego
code and Java can be achieved. Java code is used for the
implementation of the platform primitives, and can be used
to implement custom term libraries. Strategy classes written
in Java (or another JVM language) can be used to define
new strategies with only a small boilerplate. These classes
can be used to extend, override, or simply add event hooks
to Stratego definitions.

Traditional Stratego programs have been batch appli-
cations such as compilers. They output a number of in-
formational or error messages to the console, may write
resulting files to disk, and then exit. When integrating such
an application into interactive Java applications, such as
the Eclipse IDE, a different way of presenting feedback to
users is required, particularly for error reporting. This can
be addressed using an integration aspect to improve this
behavior by adapting the fatal-err strategy, used to report
fatal errors (as seen in Figure 6). Normally, this standard
library strategy is defined as follows:

fatal-err(|msg) =
log(|Critical(), msg, <id>);
<exit> 1

This standard definition prints an error to the standard error
output, and then exits the application using 1 as the exit
code. We can refine the error handling behavior by throwing

SERG Encapsulating Software Platform Logic by Aspect-Oriented Programming

TUD-SERG-2010-019a 7



an informative Java exception instead, using a primitive
called SSL_EXT_fatal_err:

override fatal-err(|msg) =
log(|Critical(), msg, <id>);
prim("SSL_EXT_fatal_err", msg, <id>)

Applications such as the most recent version of the Spoofax
language workbench [10] can use the thrown exception to
present the user with a pop-up in case of errors, referring
the user to the complete error log for more details.

Other general-purpose integration aspects can include
hooks into the logging and assertion strategies of Stratego.
More application-specific aspects may hook into strategies
to provide feedback as a transformation runs, or to interact
with the user.

D. Performance and Stack Behavior

Since a different software platform – different libraries,
language, and the JVM runtime – is used for Stratego
on Java, it has different performance characteristics than
Stratego does on C. Using aspects, performance-critical
sections of code can be replaced with new definitions that
better suit the platform.

Using the excellent Java profiler, we were able to identify
only a few bottlenecks in normal Stratego programs. Most
could be addressed by ordinary, general compiler opti-
mizations (e.g., caching the result of getConstructor()

in a local variable, as seen in Figure 2). One strat-
egy that really stood out in the profiler results was the
read-text-from-stream strategy. It is implemented di-
rectly in Stratego by reading a stream character by character,
constructing a string from the results. Still, the strategy was
never a bottleneck for typical C-based Stratego applications.
However, recall that we used this strategy in Figure 5, which
means that it is now used for almost all parser invocations.
We can override the strategy with a new definition

override read-text-from-stream =
prim("SSL_EXT_read_text_from_stream")

where we introduce a new Java primitive that efficiently
reads the stream using a block buffer instead of characters.

Stack behavior: As a functional programming lan-
guage, Stratego uses recursion to express loops. On the Java
platform, the stack is an expensive commodity, and using
deep recursion quickly uses it up. We found that many
Stratego applications, such as the compiler itself, resulted
in a stack overflow exception because of this restriction.

Stratego has many strategies that rely on left-to-right
traversal of terms, producing new, immutable left-to-right
encoded terms. To rewrite these recursive strategies to use
tail recursion would mean that additional, intermediate data
would have to be maintained on the heap. The performance
overhead rewriting key strategies such as map and filter

in this fashion may not be acceptable. As an alternative
approach, we can redefine these strategies using imperative

override filter(s) =
prim("SSL_EXT_filter", s | <id>)

override map(s) =
is-list;
all(s)

override getfirst(s) =
is-list;
one(where(s; ?x)); !x

Figure 8. Optimization aspects for stack-intensive strategies.

Java code. Similar to what can be done with mixed imper-
ative/functional programming languages such as Scala [15],
selective use of imperative code in key library definitions
allows for better stack behavior using mutable data structures
and iterative looping.

Figure 8 illustrates some of the optimization aspects that
help avoid stack overflows. In the figure, we redefine filter
using a new primitive, implemented in Java; map using the
all operator for lists; and getfirst using the one operator.
Internally, each Strategy is based directly on imperative
Java code: filter uses a primitive implemented using an
array and a “for” loop (not shown here for reasons of
space), and the other strategies use the primitive all/one

operators. These all/one operators are standard strategic
programming operators (described in [3]) that apply their
argument to all or one of the subterms of the current term.
Since the operators are implemented directly in Java, we
can use them here to avoid deep recursion on long lists.
Similarly, we redefined or extended eight other key library
strategies that use recursion. As a result, stack overflow
conditions for virtually all applications are now avoided,
without having to change the JVM’s default stack size. For
those applications that use custom, stack-intensive strategies,
similar measures can be taken.

V. DISCUSSION AND RELATED WORK

Our case study of Stratego for Java has shown instances
of aspects of all four classes of glue code, migration,
integration, and optimization aspects. We were able to neatly
separate these concerns from the base source code, grouping
them together by association. Using conditional compilation
instead, they would be scattered throughout the existing
Stratego code base.

Aspects allowed us to implement a new Stratego backend
without “polluting” the existing code base with Java-related
concerns. Since they can be woven into compiled code
– using load-time aspect weaving – there was no need
to recompile the base Stratego compiler components and
libraries with every Java-related change. This resulted in a
shorter development cycle.

By supporting the Java platform and deep integration
with other Java applications – in part made possible by the
integration aspects – this work has been an important step
towards a fully fledged interactive development environment

Encapsulating Software Platform Logic by Aspect-Oriented Programming SERG

8 TUD-SERG-2010-019a



for Stratego based in the form of the Spoofax language
workbench [10].

Related work: To our knowledge, there is no previous
work that proposes to use aspects to address language
portability concerns. However, there have been a number
of recent proposals to replace conditional compilation with
aspect weaving [1], [13], [16], [19]. Both Adams et al [1]
and Reynolds et al [16] systematically studied different
patterns of conditional compilation uses in, respectively,
the Parrot virtual machine and the Linux kernel. Both
studies concluded that for a large part of these uses, aspect
weaving is a feasible alternative, but that in many cases
preparation of the base source code was required to expose
additional join points. Lohmann et al [13] did a quantitative
analysis of the performance overhead of using aspects for
configuration of the eCos kernel, and found the overhead to
be acceptable. Likewise, they concluded that preparation of
the base source code was required. C-CLR [19] is a tool
that shows different views of source code, hiding disabled
conditional parts. Through clone detection techniques, it
allows mining of aspects. All these works have studied
configuration of systems software, using the C language. In
contrast, we studied the use of aspects for portability of
high-level programming languages. In our case study, we
did not need to prepare the base source code to expose join
points or to use potentially fragile statement-level join points
(as suggested by [13]), since only relatively simple aspect
definitions were needed for the subset of portability concerns
that could not be effectively addressed in the compiler. As
such, only a modest aspect-oriented extension of Stratego
was required, which meant only a small, acceptable startup
cost was required for using aspects for portability.

Another area where aspects have been used for lan-
guage engineering is in the construction of compilers [4],
decomposing different crosscutting concerns in analysis,
transformation, and generation of code. In contrast, in our
approach we use aspects outside the compiler, and address
platform dependencies in libraries and programs written in
the compiled language.

A notably different approach to language portability is
taken by the Scala compiler. It supports both the Java
and .NET platforms, but its primary platform is Java: the
standard Scala framework borrows types and methods from
Java, and, at this point, the .NET backend has not been
updated to the most recent version of the language. Instead
of using conditional compilation for the Scala standard
library, the .NET backend addresses the Java-based na-
ture of Scala by redirecting a fixed set of Java-specific
method calls to compatible .NET methods [17]. For example,
calls to Object.hashCode() are redirected to their .NET
equivalent, Object.GetHashCode(). As the two platforms
are closely related, this strategy suffices for operations on
standard types such as strings and objects. However, the
approach reduces separation of concerns as the compiler

must encode library-specific logic. In contrast, we use sep-
arate libraries of aspects. For platforms with a greater set
of differences, where simple redirects do not suffice, these
libraries can be used to encode further platform-specific
logic. Encoding platform logic in the compiler approach is
also less flexible as it cannot be used to adapt third-party
libraries or applications.

There have been many proposals of intermediate lan-
guages to address compilation to multiple host languages,
starting with languages such as the Universal Computer
Oriented Language UNCOL [21] to more recent works such
as C-- [7] and PIL [5]. These languages form an excellent
complementary technique to our approach, eliminating much
of the work required in implementing backends for multiple
platforms. However, by themselves, they do not address
portability concerns such as uses of native calls, platform-
specific libraries, or platform-specific performance concerns,
as discussed in Section II-A.

Aspect languages: In previous work, Kalleberg and
Visser introduced AspectStratego [8], which extends Strat-
ego with support for aspects, showing how they can be used
to address concerns such as format checking, adaptable al-
gorithms, and traceability. AspectStratego uses source-level
weaving and supports a more extensive join point model than
that of the present work. In contrast, for the present work
we used load-time weaving, which was essential to allow
weaving into compiled libraries, and allowed for a more
straightforward implementation. As such, it gave a good
indication of how a minimal, lightweight aspect weaving
addition can be used for language portability,

Aspect languages that integrate with object-oriented pro-
gramming languages, such as AspectJ [11], typically have a
more elaborate join point model than the one we presented
here or that of AspectStratego. They may support pointcuts
for specific packages, classes, and parameter types. In con-
trast, aspects for domain-specific languages generally have
a more restrictive join point model. In the case of Stratego,
which is not object-oriented, lacks package names, and has
definitions that span multiple modules, such a model arose
naturally, and formed a good match with the classes of
aspects shown in this paper.

Dynamic languages such as JavaScript, Smalltalk, and
Ruby allow extensions and modifications of existing objects
and classes with new methods that support the needs of par-
ticular applications or libraries. In our approach, all changes
are performed at load time, and are statically checked;
missing join points are reported by the compiler. Still, when
systematically applied, a fully dynamic approach to address
portability concerns as presented here is certainly feasible.

VI. CONCLUSION

This paper proposes to use aspect-oriented programming
to address portability concerns with regard to languages
that target multiple platforms. To this end, we identified

SERG Encapsulating Software Platform Logic by Aspect-Oriented Programming

TUD-SERG-2010-019a 9



four general classes of aspects to address such concerns:
aspects that add glue code to platform-specific libraries,
aspects that help developers migrate to a new API, aspects
that help integrate with other applications on a platform,
and those performing platform-specific optimizations. We
showed instances of these classes in retargeting Stratego
to the Java platform. In this case study, we successfully
used aspects to neatly encapsulate concerns that would
otherwise have spanned many different modules, in the
compiler, library, and runtime system. It is our expectation
that the same techniques can be used to help in separation
of portability concerns for other high-level languages.

Future work with regard to aspects for portability concerns
relates to software product lines: once more software plat-
forms are targeted by languages, are there aspects that can be
applied to multiple platforms? What are their dependencies
on other aspects?

Acknowledgments: We would like to thank Karl Trygve
Kalleberg for his work on Stratego/J that formed the basis
for the compiler presented here. This research was supported
by NWO/JACQUARD projects 612.063.512, TFA: Transfor-
mations for Abstractions, and 638.001.610, MoDSE: Model-
Driven Software Evolution.

REFERENCES

[1] B. Adams, H. Tromp, W. D. Meuter, and A. E. Hassan. Can
we refactor conditional compilation into aspects? In A. Mor-
eira and C. Schwanninger, editors, International Conference
on Aspect-Oriented Software Development (AOSD), 2009.

[2] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier.
Efficient annotated terms. Software, Practice & Experience,
30(3):259–291, 2000.

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.17. A language and toolset for program trans-
formation. Sci. of Comp. Programming, 72(1-2):52–70, June
2008.

[4] O. de Moor, S. L. P. Jones, and E. V. Wyk. Aspect-
oriented compilers. In K. Czarnecki and U. W. Eisenecker,
editors, Generative and Component-Based Software Engi-
neering (GPCE 1999), volume 1799 of LNCS, pages 121–
133. Springer, 1999.

[5] Z. Hemel and E. Visser. PIL: A platform independent
language for retargetable DSLs. In M. van den Brand and
J. Gray, editors, Software Language Engineering (SLE 2009),
LNCS. Springer, 2009.

[6] J. Hugunin. Dynamic languages on .NET - IronPython
and beyond: IronPython 1.0 released today! http:
//blogs.msdn.com/hugunin/archive/2006/09/05/741605.aspx,
September 2006.

[7] S. P. Jones, N. Ramsey, and F. Reig. C--: A portable
assembly language that supports garbage collection. In
Principles and Practice of Declarative Programming (PPDP
1999), volume 1702 of LNCS, pages 1–28. Springer, 1999.

[8] K. T. Kalleberg and E. Visser. Combining aspect-oriented
and strategic programming. In Workshop on Rule-Based
Programming (RULE 2005), volume 147 of ENTCS, pages
5–30. Elsevier Science Publishers, 2006.

[9] K. T. Kalleberg and E. Visser. Fusing a transformation
language with an open compiler. In Workshop on Language
Descriptions, Tools, and Applications (LDTA 2007), volume
203 of ENTCS, pages 21–36. Elsevier, April 2008.

[10] L. C. L. Kats and E. Visser. The Spoofax language
workbench. Rules for declarative specification of languages
and IDEs. In M. Rinard, editor, Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2010).
ACM, 2010.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L.
Knudsen, editor, European Conference on Object-Oriented
Programming (ECOOP 2010), volume 2072 of LNCS, pages
327–355, 2001.

[12] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented
Programming (ECOOP’07), volume 1241 of LNCS, pages
220–242. Springer, 1997.

[13] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of aspects
in the eCos kernel. SIGOPS Oper. Syst. Rev., 40(4):191–204,
2006.

[14] C. Nutter. Promise and peril for alternative
Ruby impls. http://blog.headius.com/2008/04/
promise-and-peril-for-alternative-ruby.html, April 2008.

[15] M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima Press, 2008.

[16] A. Reynolds, M. E. Fiuczynski, and R. Grimm. On the
feasibility of an AOSD approach to Linux kernel extensions.
In AOSD workshop on aspects, components, and patterns for
infrastructure software (ACP4IS’08).

[17] Scala on .NET: quirks. http://www.scala-lang.org/node/169.

[18] M. Schinz and M. Odersky. Tail call elimination on the
Java Virtual Machine. In Workshop on Multi-Language
Infrastructure and Interoperability (BABEL’01), volume 59
of ENTCS, pages 158–171. Elsevier, 2001.

[19] N. Singh, C. Gibbs, and Y. Coady. C-CLR: a tool for
navigating highly configurable system software. In AOSD
workshop on aspects, components, and patterns for infras-
tructure software (ACP4IS’07). ACM, 2007.

[20] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Soft-
ware Development: Technology, Engineering, Management.
John Wiley & Sons, 2006.

[21] T. B. Steel, Jr. A first version of UNCOL. In IRE-AIEE-ACM
(Western), pages 371–378, New York, NY, USA, 1961. ACM.

[22] E. Visser. Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam, September 1997.

[23] E. Visser et al. WebDSL. http://webdsl.org, 2007–2010.

Encapsulating Software Platform Logic by Aspect-Oriented Programming SERG

10 TUD-SERG-2010-019a





TUD-SERG-2010-019a
ISSN 1872-5392 SERG


