
EpiSpin: an Eclipse Plug-in for Promela/Spin
using Spoofax

B. de Vos, L.C.L. Kats, and C. Pronk

Delft University of Technology, The Netherlands
b.devos-1@student.tudelft.nl, l.c.l.kats@tudelft.nl, c.pronk@tudelft.nl

Abstract. This paper presents EpiSpin: an Eclipse plug-in for editing
Promela models. It provides error markers as you type, various editor
services and an interface to perform verification and simulation runs us-
ing Spin. An additional tool shows the static relations between channels,
processes and global variables. These tools have been built using the
Spoofax language workbench.

1 Introduction

Model Checking [7] is a technique used for state space exploration of a model
of a system to determine whether it meets a given specification. In the past,
model checking was performed on relatively small models. Currently, increasingly
large models are routinely being constructed. Examples of such large models
are given in [9, 12, 13]. In the latter paper a model consisting of more than
7000 lines of Promela code was developed and model checked. Current work on
model checking FreeRTOS [4, 15] will also lead to large programs. With these
developments, it becomes increasingly important to provide state-of-the-art IDE
support for efficient development and maintenance of Promela models.

In this paper, we introduce EpiSpin1, an Eclipse plug-in for editing Promela
programs and starting Spin verification and simulation runs. It includes several
editor services like syntax highlighting, content completion, code folding and in-
stant feedback on syntactic and semantic errors. Additionally, a tool is integrated
which shows the static relations between processes, channels and variables.

Implementing state-of-the-art IDE support for a new language can be a chal-
lenge, requiring not only the implementation of a parser and semantic analysis,
but also extensive knowledge of the sometimes complicated and highly interde-
pendent APIs and extension mechanisms of an IDE framework. For EpiSpin, we
use the locally developed Spoofax language workbench [8] for the development
of an Eclipse plugin. As a language workbench, Spoofax abstracts over these
implementation artifacts and provides a comprehensive environment that inte-
grates syntax definition, program transformation, code generation, and declara-
tive specification of IDE components.

We continue this paper with a brief introduction and background on Promela,
the Spin Model Checker, the Spoofax language workbench and related work

1 EpiSpin: Eclipse plug-in for Spin



inspiring this paper. The main development work on the Eclipse plug-in will
be described in Section 3. Section 4 will describe the Static Communication
Analyzer derived from the same Spoofax set-up. Testing the plug-in is covered
in Section 5. The conclusions and some future work can be found in Section 6.

2 Background

Spin and Promela Promela is a state of the art modeling language to describe
verification models. These models can be analyzed by the iSpin model checker.
A grammar definition of the complete Promela language (including version 6
constructs) and a more complete description of Promela and the Spin tool for
which Promela has been developed can be found in [6].

Spoofax Spoofax is a platform for the development of textual domain-specific
languages with state-of-the-art IDE support. It combines the SDF syntax defini-
tion formalism [14] for the declarative specification of syntax with the Stratego [3]
program transformation language for the specification of semantics.

Spoofax supports agile development of languages by allowing incremental,
iterative construction of language and editor components. It shows editors for
the language under development alongside its definition. As soon as a syntax
definition has been written, an editor with default syntax highlighting and other
syntactic editor services can be used, and customized. Stratego can be used to
specify more sophisticated editor services as transformations on abstract syntax
trees, to support e.g. semantic error markers or content completion.

Related Work Our project is not the first endeavor to create an Eclipse plugin
for Spin and Promela. Two other editors were created before by Rothmaier et
al. [12] and Kovše et al. [9]. Those works used the standard, Java-based Eclipse
API and follow a traditional architecture for editors, using regular expressions
for editor services such as syntax highlighting and code folding. In the case
of Kovše, the editor could also process the output of the Spin syntax checker
to provide in-editor error markers. Our approach is fundamentally different: we
emphasize rich, as-you-type editor feedback to aid developers of Promela models.
We use a language workbench for our approach instead of the standard, rather
low-level Eclipse API and regular expressions. Using Spoofax, new languages
can be developed using a set of grammar production and transformation rules.
From this, the workbench generates an editor with a parser that executes (in a
background thread) with every change in a Promela model. Based on the parser
our editor provides more accurate syntax highlighting and as-you-type syntactic
error markers. Internally, it also creates abstract syntax trees used for analyses
of the model. With these analyses we provide editor services such as inline error
markers without requiring the user to manually invoke the Spin syntax checker.
We also provide more editor sophisticated services such as reference resolving
and content completion.



3 EpiSpin

EpiSpin includes the following features:

– Promela editor with full syntax support according to Promela language ver-
sion 6 including the new for and select keywords, and support for inline
specification of LTL properties,

– Instantaneous feedback on syntactic and semantic errors,
– Syntax highlighting, outline view, code folding, code completion and refer-

ence resolving,
– Interface to start the Spin verifier and simulator,
– Static Communication Analyzer (see Section 4).

The Spin simulator and verifier can be called from within EpiSpin directly. A
Spin command is executed according to the options specified and the resulting
textual output is shown in the Eclipse console. The Promela grammar from [5]
has been used as a basis to form the SDF rules. Since only context-free grammars
can be specified in SDF, EpiSpin currently does not provide full support for
macros. As a work-around it is possible to call the Spin syntax checker or to
open the model in iSpin.

Editor services

In Spoofax, the syntactic editor services can be fully specified using declara-
tive editor service descriptor specifications [8]. Syntax highlighting, code folding
and outline view are implemented to improve the readability, especially of large
Promela models. These last two editor services are implemented in Spoofax by
listing the sorts and constructors for which the editor service needs to hold. An-
other syntactic editor service is syntactic content completion. Based on static
templates, at every moment a list of completion suggestions can be requested.

There are three semantic editor services in EpiSpin, being reference resolving,
semantic completion and error checking. All of those are completely integrated in
Eclipse. This means that error markers and error messages are shown instanta-
neously when an error is made. For reference resolving and semantic completion
it is necessary to know about the identifiers present in the model. Therefore the
first step of the analysis is to find all identifier declarations. This is done by
defining a rule that maps the identifier name to its constructor for every decla-
ration. When an instance of an identifier is clicked, the appropiate declaration is
found by passing the name of the identifier to the rule. When content completion
is triggered at a position where an identifier is expected, a list of all keys of the
rule is shown. In Figure 1 a partial screenshot of Eclipse with EpiSpin can be
found. Explanations are given in rounded boxes.

4 Static Communication Analyzer

The third author of this paper, while marking student work in Spin, often found
himself drawing the communication structure (processes, channels and global



Reference resolving

Content completion

Error message

ChannelProcess

Fig. 1. Editor services, option window and dot graph

variables) of the delivered work by hand; a task which can be taken over by this
tool. Using rewrite rules, Promela code is transformed into constructors of an-
other language or into code directly. With the Static Communication Analyzer,
all processes, global variables and channel operations are displayed in a DOT
graph which can be viewed in Eclipse using the ImageViewer2. This DOT code
is obtained by traversing the AST and creating a node or edge for every process,
variable or channel operation that is in the AST. When a process executes an-
other process, this is shown by a dashed arrow. A channel sent as a parameter
to another process and therefore existing multiple times as a local channel is
pictured as one channel in the graph.

5 Testing the Plug-in

Testing EpiSpin has been done by syntactic testing and semantic testing. Syn-
tactic testing is mainly done by feeding the parser with a lot of different Promela
models from [1] and [10]. Since there is no full support for macro calls, all mod-
els that include macros are first preprocessed by the spin -I command and
then parsed by EpiSpin. The editor services are tested during implementation
by making a small test program for every rule that is implemented. Mutation
testing [11] is used to obtain more test cases.

2 http://www.eclipse.org/evangelism/samples/imageviewer/



6 Conclusions and future work

We created a Promela editor with a Promela parser, various editor services and
the possibility to call the Spin verifier and simulator. Additional tools such as
the Static Communication Analyzer can easily be derived because of the use of
a language workbench. The use of Spoofax makes it it easier to include future
changes in the Promela grammar. We are currently looking into work-arounds
for the limited support of macro calls.

EpiSpin can be downloaded from http://epispin.ewi.tudelft.nl (as a
plug-in or as a stand-alone Eclipse distribution). It is not needed to have Spoofax
installed since the required libraries are included in EpiSpin. This site will also
show how the plug-in can be installed and used.

Acknowledgements This research was supported by NWO/JACQUARD project
612.063.512, TFA: Transformations for Abstractions

References

1. Beem: Benchmark for explicit model checkers. http://anna.fi.muni.cz/models/.
2. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17.

A language and toolset for program transformation. Sci. of Comp. Programming,
72(1-2):52–70, June 2008.

3. FreeRTOS. The FreeRTOS Project. http://www.freertos.org.
4. G. J. Holzmann. Promela language reference. http://www.spinroot.com/spin/

Man/promela.html.
5. G. J. Holzmann. The SPIN Model Checker : Primer and Reference Manual.

Addison-Wesley Professional, September 2003.
6. R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv.,

41:21:1–21:54, October 2009.
7. L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for declarative

specification of languages and IDEs. In W. R. Cook and et al., editors, Proceedings
of OOPSLA 2010, Reno/Tahoe, Nevada, USA, pages 444–463. ACM, 2010.

8. T. Kovse, B. Vlaovic, A. Vreze, and Z. Brezocnik. Eclipse plug-in for Spin and
st2msc tools-tool presentation. In C. S. Pasareanu, editor, SPIN, volume 5578 of
LNCS, pages 143–147. Springer, 2009.

9. Promela database. http://www.albertolluch.com/research/promelamodels.
10. J. Offutt, P. Ammann, and L. L. Liu. Mutation testing implements grammar-based

testing. Mutation Analysis, Workshop on, 2006.
11. G. Rothmaier, T. Kneiphoff, and H. Krumm. Using SPIN and Eclipse for optimized

high-level modeling and analysis of computer network attack models. In Model
Checking Software, volume 3639 of LNCS, pages 236–250. Springer, 2005.

12. P. Taverne and C. Pronk. RAFFS: Model Checking a Robust Abstract Flash File
Store. In Formal Methods and Software Engineering; 11th Intn’l Conf. on Formal
Engineering Models, ICFEM2009, volume 5885 of LNCS, pages 226–245, 2009.

13. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, September 1997.

14. J. Woodcock. First steps in the verified software grand challenge. Software Engi-
neering Workshop, pages 203–206, 2006.


