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Abstract. Parser generators are an indispensable tool for rapid language devel-
opment. However, they often fall short of the finesse of a hand-crafted parser, built
with the language semantics in mind. One area where generated parsers have pro-
vided unsatisfactory results is that of error recovery. Good error recovery is both
natural, giving recovery suggestions in line with the intention of the programmer;
and flexible, allowing it to be adapted according to language insights and lan-
guage changes. This paper describes a novel approach to error recovery, taking
into account not only the context-free grammar, but also indentation usage. We
base our approach on an extension of the SGLR parser that supports fine-grained
error recovery rules and can be used to parse complex, composed languages. We
take a divide-and-conquer approach to error recovery: using indentation, erro-
neous regions of code are identified. These regions constrain the search space
for applying recovery rules, improving performance and ensuring recovery sug-
gestions local to the error. As a last resort, erroneous regions can be discarded.
Our approach also integrates bridge parsing to provide more accurate suggestions
for indentation-sensitive language constructs such as scopes. We evaluate our ap-
proach by comparison with the JDT Java parser used in Eclipse.

1 Introduction

Domain-specific languages offer substantial gains in expressiveness and ease of use
for a particular problem domain. To efficiently construct and use domain-specific lan-
guages, language development environments should be used, such as IMP [6], the Meta-
Environment [27], MontiCore [14], openArchitectureWare [8], or Spoofax/IMP [13].
With these tools, languages are constructed using a grammar as the principal artifact.
Using a parser generator, a grammar can be used to automatically generate a parser.
When deployed, the parser constructs abstract syntax trees (ASTs) from programs, used
to provide the user with syntactical and semantic editor services, such as an outline view
and error marking.

Parser generators are an indispensable tool for rapid language development, allow-
ing the language to be quickly changed according to new domain insights and needs. Yet
general-purpose programming languages are often still constructed using handcrafted
or partially handcrafted parsers. For example, the Java parser used in the popular Eclipse
JDT Java editor, is based on a parser generated by JikesPG (now known as LPG) [5].
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However, the parser employs handwritten recovery rules as well as a number of large,
customized Java components.

The reason often stated for not using a purely generated parser is that they fall
short of the finesse of a handcrafted one, built with the language semantics in mind.
A particular area where generated parsers have provided unsatisfactory results is that
of error recovery, which is essential for parsing incomplete and syntactically incorrect
programs, and thus indispensable for interactive editors. Problems with error recovery
in generated parsers are the quality of the recovered program and the reported errors,
and finding a good trade-off between recovery quality and performance.

Some parser generators allow custom recovery rules to improve error recovery qual-
ity [2,5,10,12]. Custom recovery rules allow a language engineer to inspect and improve
an error recovery strategy. Compared to a handcrafted parser, a rule-based recovery
specification is much easier to maintain, especially as languages are changed or reused
to build new languages. Another way to improve error recovery is through grammar
analysis, such as LPG’s scope detection [5].

In previous work we introduced an approach to error recovery that derives properties
from grammars to produce explicit, customizable recovery rules [12]. Using scannerless
generalized-LR (SGLR) parsing, the approach supports languages with a complex lex-
ical syntax, such as Aspect] [3], and language embeddings and extensions, such as the
Stratego program transformation language with embedded Java fragments [30]. Using
generalized parsing, SGLR can parse ambiguous grammars. By considering the differ-
ent ambiguous meanings of a syntactically incorrect program, through inspection of an
expanding search space for applying the set of recovery rules, the approach can provide
recovery suggestions that local recovery methods cannot.

An open problem we identified with our approach is that some search space-based
suggestions are too “creative” and not natural (i.e., as a programmer would suggest
them) [12]; in some cases it is simply better to ignore a small part of the input file,
rather than to try and fix it using a combination of insertions and discarded substrings.
Another open problem is that for tight clusters of errors, it is not always feasible to
provide good suggestions in an acceptable time span.

In order to provide better, more natural suggestions, the present paper proposes an
approach to identify the region in which a parse error is found. By restricting the search
space for applying the recovery rules to this region, it becomes much less likely that the
user is presented with “creative” suggestions that are nowhere near the original error.
Using a smaller search space also helps performance. To further help performance,
we add a form of “panic mode” [7]: if no solution of applying the recovery rules is
found within an acceptable time span, the entire region can be skipped and marked as
erroneous. This way, the parser can still continue, report other errors, and construct a
partial AST.

We select erroneous regions based on indentation usage. Using indentation, pro-
grams typically form logical, nested regions of code. The approach of using layout
information for partitioning files has been inspired by the technique of bridge pars-
ing [20]. Bridge parsing is a supplementary technique to grammar-based error recovery.
It uses structural information, such as typical use of indentation for bracket placement,
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to improve recovery quality. To further improve the quality of recovery suggestions, we
adapted the bridge parsing approach to be usable with an SGLR parser.

We have identified and focus our paper on two open issues with error recovery for
generated parsers. The first is the quality of corrections, which is often lacking since a
generic solution is not aware of the semantics or typical structure of a language. The
second is that given high-quality recovery, a good balance with the performance of error
recovery must be maintained. To address these issues, this paper provides the following
contributions:

— The use of layout to select regions of code that enclose a syntax error. These can
be analyzed in detail by a secondary strategy, or discarded if no recovery is found
within an acceptable time span.

— The application of bridge parsing based on a context-free (tokenizer) grammar
rather than a scanner, showing how bridge parsing can be integrated into a parser
rather than used as a preprocessor, improving results.

— The use of grammars for automatic construction of a tokenizer grammar and the
heuristic derivation of a bridge parser specification.

We begin this paper with background on error recovery and setting out a number of re-
quirements for good error recovery. In Section 3, we show how regions around a syntax
error can be selected and used for coarse-grained error recovery. Section 4 describes
how these regions can be used to apply recovery production rules. We refine error re-
covery for scopes based on bridge parsing in Section 5. Finally, Section 6 evaluates
our approach and compares different configurations, using the Eclipse JDT parser as a
baseline.

2 Error Recovery

Parsers serve two purposes: determining the grammatical structure of an input program,
and syntactically validating it. Given the grammatical structure, the parser constructs
an abstract syntax tree (AST), used for semantic analysis in tools such as compilers or
editors. While performing syntactic validation, a parser also reports any errors that exist
in the input.

A good parser does not only report the first character or token that is not valid ac-
cording to the grammar, but also provides the user with a more sophisticated diagnosis.
It can for example report missing constructs (e.g., “} expected here”). An even better
parser also supports error recovery: based on the analysis of an error, it can recover from
an error and continue parsing the rest of a file. Recovery techniques can be divided into
correcting error recovery, which tries to transform the input string into a syntactically
correct one, and non-correcting error recovery, which tries to continue the analysis by
skipping parts of the input [7].

Error recovery plays an important role in modern, interactive development envi-
ronments (IDEs). IDEs parse a file as it is typed in, making incomplete programs and
syntax errors the common case rather than the exceptional one. Using error recovery,
a parser can still construct a partial abstract syntax tree, allowing the IDE to perform
semantic analysis and provide the user with interactive feedback (e.g., error marking,
content completion).
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In their comparative study, Degano and Priami [7] set out a number of quality crite-
ria for good error recovery strategies, on which we will elaborate here. We distinguish
between aspects that impact users and developers of a language. Firstly, there are three
main criteria with respect to the end user’s experience:

— Constructing a good AST: The recovered program should be as close to the program
as intended by the programmer as possible. Since the AST is used for syntactic and
semantic editor services in the IDE (e.g., the outline and error markers), the quality
of the reconstructed AST is of great importance for the user experience.

— Providing good feedback: The parser should provide the user with good suggestions
of how to fix the program. Spurious error messages should be avoided; instead, a
small number of natural suggestions should be reported.

— Delivering adequate performance: For interactive use, the error recovery mecha-
nism must not incur an unacceptable overhead. As their last criterion, Degano and
Priami have suggested to only take performance degradation into account only if
greater than a fixed maximum value.

Important criteria for developers of a language or an IDE (plugin) are:

— Flexibility: The approach must be easily adaptable to language insights and lan-
guage changes.

— Language independence: an error recovery algorithm should be independent of a
particular language. It should be usable with any given grammar, without introduc-
ing a prohibitive amount of work.

— Transparency: it should be clear why a particular recovery is presented. The gram-
mar engineer should have insight into how the recovery works for a given grammar.

3 Coarse-grained Error Recovery

A parser that supports error recovery typically operates by consuming tokens (or char-
acters) until an erroneous token is found. At the point of detection of an error, the
recovery mechanism is activated. Simple, local approaches to error recovery will then
attempt to make a modification to the input so that at least one more original symbol
can be parsed [7]. For most cases, this works quite well. There are cases, however, par-
ticularly for complex languages, where these algorithms choose a poor repair that leads
to further problems as the parser continues (‘“‘spurious errors”).

Spurious errors are the result of one of the major problems in error recovery: the
difference between the point of detection and the actual location of an error in the
source program [7]. In contrast to local methods, global recovery methods examine the
entire program and make a minimum of changes to repair all syntax errors [2,17]. While
these give the “best” repair, they are not efficient.

An alternative approach to local or global recovery is to consider only the direct con-
text of the error, by identifying the region of code in which the errors reside [16,18,21].
Using regions for error recovery has three main advantages. Firstly, they reduce the
search space for a recover algorithm. Secondly, they constrain the recovery suggestions
to a particular part of the file, avoiding suggestions that are spread out all over the file.
And thirdly, they can be used as a secondary recovery strategy [7], i.e. erroneous re-
gions can be discarded entirely if a detailed analysis of the region does not provide a
better recovery solution.
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class X { @

int i;

void methodX(){ @ @
i=1;

if (true)d{
foo();

= SmE
}

n(Q);
}

} OIC

Fig. 1. Indentation closely follows the hierarchical structure of a program.

3.1 Nested Structures as Regions

Code constructs such as “while” statements and method bodies form good regions for
regional error recovery. They form free standing blocks, in the sense that they can be
omitted without influencing the interpretation of other blocks. Erroneous free standing
blocks can simply be skipped, providing a coarse recovery that allows the parser to con-
tinue. A typical technique to select such regions is to look for certain marker tokens in
the context of an error, such as the fiducial tokens of Pai and Kieburtz [21]. These to-
kens depend on the language used. For example, for Java, keywords such as class and
while could be used. We will take a more language-independent approach in this paper.

The method presented in this section is based on the use of indentation to detect code
constructs. Indentation typically follows the logical nesting structure of a program, as
illustrated in Figure 1. The relation between constructs can be deduced from the layout.
An indentation shift to the right indicates a parent-child relation; the same indentation
indicates a sibling relation.

Indentation usage is not enforced by the language definition. Proper use of layout
is a convention, being part of good coding practice. We generally assume that most
programmers apply layout conventions, but should keep in mind the possibility of in-
consistent indentation usage.

Proper recognition of nesting structures prevents bad recoveries, obtained by merg-
ing structures that do not belong together. Figure 2 illustrates this idea with the example
of a method that is missing a closing brace. The parser tries to parse the method header
of the second method as a statement, which leads to a failure at the open brace in the
method header. Indentation suggest that both methods should be considered as sepa-
rate constructs. An indentation-based region selector will detect the erroneous if-block;
which leads to the recovery presented in the middle part of the figure. An inferior re-
covery would be obtained by removing tokens surrounding the error detection point.
The example at the right shows the result, merging the erroneous method with the cor-
rect method.

3.2 Indentation-based Region Selection

We follow an iterative process to select an appropriate region that encloses a syntax
error. Each iteration, a different candidate region is considered. This candidate is then
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class X { class X { class X {
int methodX(){ int methodX(){ int methodX(){
if (true)q{ if (true){
fooO; //} fooO; //}
return 5; return 5; return 5;
} } }
void methodY(){ void methodY(){
int i=5; int i=5; int i=5;
bar(i); bar(i); bar(i);
} } }
} } }

Fig. 2. Erroneous code (left), discarded erroneous region (middle), and merged con-
structs (right)

either validated or rejected; in case of a rejected candidate, another candidate is consid-
ered. We show example scenarios in Figure 3.

Figure 3(a) shows a syntax error and the point of detection, indicated by a triangle
(left figure). A candidate region can be selected based on the alignment of the void
keyword and the closing bracket (middle figure). The candidate is then successfully
validated by discarding the region, and attempting to parse the remainder of the file
(right figure). After validation, the parser can be reset to its previous state (indicated
by the circle, which represents a choice point for the parser). A detailed analysis of
the region may be used to attempt to repair the erroneous region, as we will see in the
following sections.

Figure 3(b) illustrates a rejected candidate region. Based on the point of detection,
an obvious candidate region may be the m2 method (middle figure). However, an attempt
to parse the construct that follows it leads to a premature parse failure; the region is
rejected. Figure 3(c) revisits the example. Another candidate region is selected, this
time one preceding the point of detection. This region is successfully validated.

The region validation criteria should balance the risk of selecting the wrong can-
didate, which may lead to spurious errors, and the risk of rejecting a correct candidate
region. The latter typically occurs in the context of multiple errors, in which a new,
unrelated error causes the parser to fail again. Both cases lead to large regions, which
should be avoided. We currently consider a region valid if the two lines of code suc-
ceeding it parse correctly, which has shown good practical results.

Selection Schema The candidate regions are explored in an ordered fashion, with the
aim to find the smallest fragment enclosing the error first.

Current structure The first candidate region is the construct start-  while(true)){

ing from the error detection location. The region is recognized by foo(;

a forward skip until the end of the construct is found. The con- .

struct ends with the last child (more indentation), including the Fig. 4. Extra )
closing bracket after the last child (same indentation). In Figure 4, the parser fails after
reading the mistakenly inserted second brace. Discarding the entire while statement
resolves the error.

6 TUD-SERG-2009-024
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int i; int i;
void m2Lﬂ‘[ O
bar ()
void m3 () { Vvoid m3 () { void m3 () {
mi(); mi); mi);
} } 1V
~—
(a) A candidate region is validated and successfully discarded.
('—‘\
int i; int i; int i;
void ml () { void m1 () { void ml () {
foo (); foo(); foo ();
i J/as /b3
voi'd m2 () { —» | giNGidm2TV{™ | —» | O
bar (); i bar(); i
1
veid m3 () {} vold m3 () {}

int i;

void ml () {
foo();

i

vord m2 () {
bar();

b

foo ()
I}

bar () ;
}

e s VT
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> e voidm2 () {

bar ()
v

void m3 () {} void m3 () {}

void m3 () {}

(c) An alternative candidate region is validated and successfully discarded.

Fig. 3. Recovery by discarding of regions

Previous structure The second candidate is the structure preced-
ing the error detection location. The region is detected by a back-
wards skip, using the indentation information stored in the choice
points. Typical problems that are solved by discarding the previ-
ous structure are uncompleted lines and scope errors caused by

void methodX() {
foo(
bar() ;

}

Fig. 5. Missing );

a missing closing brace. The error in Figure 5 is detected after the bar () ; statement,

while the preceding line caused the error.

Siblings Regions that are mutually dependent should be dis-
carded as a whole. A typical example is provided in Figure 6. The
unclosed “then” clause cannot be discarded, because the “else”
clause cannot exist in isolation. The “sibling-procedure” deals
with this situation. The procedure starts with the current struc-

if (true){
foo();

else
bar();

Fig. 6. Missing }

ture as discarded region. Then it successively includes the prior sibling and the next
sibling, until a valid erroneous region is found or all siblings have been considered.

Parent The next region to consider is the parent structure, iden-
tified through a forward and backward search for a decrease in
indentation. Identifying the parent structure can be useful when a
child that is missing or erroneous. Parent child dependencies are

TUD-SERG-2009-024
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rarely seen in common programming languages, but they can occur in DSLs. The exam-
ple in Figure 7 shows a simple person data language with an error in the required field
email. Apart from solving errors in parent-child dependencies, the parent selection
scheme adds some robustness with respect to inconsistent indentation.

While the selection schemata have been designed to be generally applicable, the suc-
cess of our approach depends on assumptions of indentation conventions and language
characteristics. Conventions for widely used programming languages seem to meet the
assumption that the indentation follows the logical nesting structure of the program. A
more problematic issue is the (mis)use of indentation by programmers. Inconsistent in-
dentation usage decreases the quality of the results, although some robustness for small
deviations can be expected. The second assumption we make is that programs have
free standing blocks, i.e. that discarding a region still yields a valid program. Again,
conventional programming languages seem to meet this requirement. However, some
(declarative) languages use constructs that cannot be discarded because they are syn-
tactically obligatory. Such languages can lead to large regions.

3.3 Implementation Considerations

We implemented the region selection method in SGLR, in order to use it in collaboration
with recovery rules [12]. The selection method does not depend on specific features of
generalized parsing and can be implemented in other LR parsers as well.

Layout conventions for braces Varying conventions for closing barQ;
and opening braces are used. They can be omitted in some sit- Whﬂ;sz%l?)
uations, besides the position of the opening brace can vary. The dox(); ’
figure illustrates the problem with a concrete example. Two code )
fragments with the same indentation characteristics, have a differ- }]hlle (true)
ent decomposition in regions. foo();

The need to cover all different notations in a language inde- ¥
pendent way, has greatly increased the complexity of the imple- Fig. 8. Different in-
mentation. A simple solution would be provided by an explicit dentation styles
recognition of those tokens. This would make the algorithm more
precise and the implementation straight forward. However, this will introduce a lan-
guage dependency. We have chosen to stick with our language independent approach,
and deal with the support for various brace-conventions in the code. In case of doubt,
we assume the notation including the braces on separate lines. The main disadvantage
is that sometimes one or two correct lines are included in the selected region.

Whitespace parse A simple discarding of erroneous regions will offer a recovery and
allows the parser to continue the analysis, however the information about line and col-
umn numbers may be lost. This will cause problems in the scenario of interactive editor
support. A simple solution is offered by whitespace parsing. All symbols, except new-
lines and tabs are parsed as whitespace. Information about skipped regions can be used
to generate error messages.

8 TUD-SERG-2009-024
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Parse tree completion We maintain only a limited number class X{
of choice points to backtrack to, to ensure that there is only e

.. . . void methX(){...}
a negligible overhead when parsing (parts of) files without void methYO{...}
errors. This limitation means that in some cases the layout- void methZ(
based region selection cannot provide a candidate region. For  Fjg. 9, An uncom-
example, the class construct in Figure 9 is unfinished, and can  pleted class
only be discarded as a whole. Complementary to the region
selection schemata, we implemented a technique that completes the parse tree for an
unfinished code fragment. In this way, at least the already recognized part of the code
can be reported to the programmer. A program prefix missing only a few closing tokens
at the end, can be completed to a valid program by inspection of the parse table. Al-
though the missing next token is not known, a list with possible tokens can be retrieved
from the parse table. The completion method creates separate stack branches for each
possible “next state”, deduced from the list of possible tokens. After a number of parse
steps using this branching mechanism, an accepting state will be found. Generalized
parsers like SGLR and GLR provide native support for branching. The method works
efficient if only a few general branching steps are required, which corresponds to a
small number of missing tokens. Therefore, we apply the method on the location of the
last big reduction, the closing brace of methy, in the example.

4 Fine-grained Error Recovery

We can improve upon the coarse-grained recovery approach by using it in conjunction
with a more fine-grained, correcting error recovery method. In this section we outline
how the error recovery productions of [12] can be used to perform fine-grained error
recovery inside erroneous regions.

Error recovery productions allow for a high-level, grammar-oriented way of cus-
tomizing a recovery strategy [2,10]. Because the language engineer must design them
a priori, they have sometimes been criticized for being language-dependent [7]. In [12]
we introduced a way to derive recovery rules from a grammar, and added general rules
that can simply skip over erroneous code fragments.

Following [12], recovery productions are written just as any other production, an-
notated with the {recover} annotation. We use the flexible SDF syntax definition for-
malism [29] for the specification of grammars and their recovery rules. As an example
of an SDF production, consider the following Java production:

"{" BlockStm* "}" -> Block {cons("Block")}
This rule specifies that a { literal, followed by a list of BLockStm symbols and a closing
} literal, can be parsed as a Block. The {cons} annotation specifies the name used for
the node in the abstract syntax tree. Based on this rule (and taking global properties of
the grammar into consideration, as outlined in [12]), the following recovery production
rule can be derived:

-> "}" {recover, cons("INSERT")}
This production specifies that a possible recovery is to parse the empty string (hence
the empty left-hand side) instead of the closing } literal. Annotated {recover}, this
insertion recovery rule is only used when recovery is required.

TUD-SERG-2009-024 9
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In addition to insertion recovery rules, [12] also specifies lexical “catch-all” produc-
tion rules to discard unparsable substrings. Together, these rules could parse any string,
distinguishing only “words” and “separators”:

[A-Za-z0-9\_]* -> WATERWORD {recover}
~[A-Za-z0-9\_\ \t\r\n] -> WATERSEP {recover}

Each application of recovery rule incurs a cost of 1. A minimal-cost solution may
be the best possible match with the programmer’s intention. However, considering all
candidate recoveries for a complete file results in a search space that is too large to
inspect within reasonable time. In [12] we applied an unbounded, expanding search
space to discover a recovery solution with a minimum cost. For most cases, this ap-
proach is effective, but for a number of pathological cases, the unbounded search leads
to unacceptable recovery times, or to far-fetched, non-local recovery suggestions.

By restricting the search space to a selected region of code, recovery performance
and locality can be improved. Smaller regions (fewer than four lines) are reparsed, ap-
plying a bounded number (three in the current implementation) of recover productions.
For larger regions, we assume that the error can be corrected in the three lines nearest
to the parse failure, which seems to be the case in most practical examples. If the ap-
plication of recovery rules does not lead to a successful repair, the entire region can be
discarded using the whitespace parse approach discussed in the previous section.

S Bridge Parsing

One of the most common errors made by programmers is omit- 1 class C {
ting closing brackets of scopes, since scopes are recursive struc- Voiitm}(,); t
tures need to be properly balanced [5]. A parser can recover in 4  int x;
these cases by inserting the missing braces. Unfortunately, there 5
are often many possible locations where a missing brace can be Fig. 10. Missing }
inserted. Consider for example the Java fragment of Figure 10.
This fragment might be recovered by inserting a closing brace at the start of line 2, 3,
or 4. However, the use of indentation suggests the best choice may be just before the
int x; declaration. Bridge parsing [20] provides an algorithm to improve error recov-
ery based on indentation. Provided with knowledge of typical usage in Java programs,
it can correctly recover cases such as the example above. It can be configured to work
for any given language, and works independently of a particular parser technology.
Inspired by island grammars [28,19], a bridge parser employs a scanner that only
recognizes tokens that make up scoping structures (“islands”) and important tokens for
determining how those islands should be connected (“reefs”). All other tokens (“water’)
are skipped. Given a list with these kind of tokens, the bridge parser constructs a bridge
model, which captures the scopes in the input. A scope in this context corresponds to
two islands connected with a bridge. Two islands will only match if a pre-defined set
of conditions is fulfilled. Missing bridges in the bridge model reveal broken scopes.
They can be repaired by locating an appropriate “construction site” for inserting a new,
artificial island, matching the island in need of recovery. A new bridge can then be con-
structed. An algorithm for incrementally constructing multiple bridges is given in [20].

10 TUD-SERG-2009-024
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module Java-SQL-Tokenizer

context-free start-symbols
Class Stm Expr ...

context-free syntax // token list definitions for all start symbols
ClassToken Class -> Class {cons("Cons")}
-> Class {cons("Nil")}

context-free syntax // tokens and the {cons} name of their production
EnumDecHeadToken -> ClassToken {cons("EnumDecHead")}
SQLId -> ClassToken {cons("Id")}

lexical syntax /7 lezical token definitions
"enum" -> EnumDecHeadToken
[A-Za-z]+ -> SQLId4

Fig. 11. A (partial) generalized tokenizer definition for the Java-SQL language.

5.1 Scannerless Bridge Parsing

Composed languages and languages with a complex lexical structure (such as Aspect])
cannot or can only with great difficulty be parsed using a separate scanner [3]. For ex-
ample, the scanner for the Java language recognizes enum as a keyword. This means
that it can never be parsed as an identifier. When Java is extended or composed with an-
other language, this restriction also applies for the combined language. Using the same
scanner, a composition of Java and SQL cannot parse programs where enum is an SQL
identifier. Using scannerless parsing [24], these issues can be elegantly addressed [3].

Since bridge parsing as presented in [20] is based on the notion of a scanner, it
cannot support languages that depend on scannerless parsing or parsing with a context-
sensitive scanner. Still, bridge parsing only depends on a small set of tokens, such as
brackets and keywords, not on a full scanner definition. So why can we not just con-
struct a scanner for those literals in the grammar? The problem is that each sequence
of characters, there can potentially be many different lexical and literal interpretations.
Again consider enum, which is keyword in Java, but may also be an identifier in the
composed Java-SQL or Stratego-Java languages.

To overcome the difficulties of a scanner-based approach, we introduce the notion
of a generalized tokenizer. This tokenizer constructs all possible token interpretations,
forming an ambiguous token stream. We implement this tokenizer based on the gram-
mar of a language. For example, given the Java-SQL definition, we mechanically strip
all context-free productions and retain only definitions for literals and lexical symbols.
For each sort in the grammar, we then generate a start symbol that parses the different
lexicals and literals reachable from that state. A (partial) tokenizer grammar for Java-
SQL is illustrated in Figure 11. Using the Class start symbol, this grammar constructs
the following token stream (a list of Cons and Nil nodes) for the string enum Color{}:

[ amb([EnumDecHead("enum"), Id("enum"])

, LAYOUT(" "), Id("Color")

, amb([EnumBody("{"), ClassBody("{"), Block("{"), ...I1)
, amb([EnumBody("}"), ClassBody("}"), Block("}"), ...1)]

where ambiguities in the token stream are indicated with an amb term. For composed
languages, these token streams quickly grow more complex as the number of different
token interpretations increases.
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grammar Layout; grammar SimpleJava;

abstract island LayoutStart; import Layout;
abstract island LayoutEnd;

g . = nfn
abstract reef Layout; island LBrace : LayoutStartIsland {

for-sglr ("EnumBody" | "ClassBody"|...);
bridge from LayoutStart to LayoutEnd; island RBrace : LayoutEndIsland = "}"
for-sglr ("EnumBody" | "ClassBody"|...);

attr Layout LayoutStart.indent =
[first left Layout];

attr Layout LayoutEnd.indent =
[first left Layout]; bridge from LBrace to RBrace;

java-attr int Layout.pos =
...embedded java code...

reef Indent : LayoutReef =
NEWLINE| (WS|TAB)+

recover LayoutStart find [a:Layout]
where (a.pos <= this.indent.pos)
insert bridge-end before a;

Fig. 12. A generic bridge grammar. Fig. 13. A bridge grammar for Java.

We simplify the token stream by considering only those tokens that are of interest to
the bridge parser, and by flattening the ambiguities to create multiple, possible interpre-
tations that have no deep ambiguities. After that, the bridge parser can assign different
island classes, reef classes, and water to the tokens:

[KeywordReef ("enum"), LayoutReef(" "), Water("Color"), LBrace, RBrace]
In this list, the LBrace and RBrace classes encompass all interpretations for the {
literal. In the remainder of this section we will discuss how the binding between these
tokens and the bridge parsing island classes is specified.

5.2 The Bridge Parsing Specification

A bridge parser is generated from a bridge parser specification (or bridge grammar) [20].
It defines all islands, reefs, and rules for matching and recovering islands. Attributes can
be added to islands and reefs to help with matching in rule expressions. These speci-
fications are composable and can be extended in several steps. Generic behavior such
as “closest match recovery” or “layout-based recovery” is defined in a generic speci-
fication that can be reused and redefined by other grammars. Figure 12 lists parts of a
generic bridge grammar that specifies layout-based recovery. The grammar specifies ab-
stract LayoutStart and LayoutEnd islands that must be connected by a bridge. It also adds
indent and pos attributes that can be used to do layout-based matching, as described in
[20]. The recover rule uses these attributes to construct an artificial LayoutEnd island to
repair bridges from LayoutStart islands.

We extended the bridge parser specification language for the purpose of integrating
it with SGLR, adding a new for-sglr clause to capture the different possible interpre-
tations for one token or character. For example, braces in Java have several possible
interpretations according to the SGLR tokenizer grammar. Figure 13 shows how these
can be captured using the for-sgir clause. The arguments of the clause correspond to
the node types in the generalized token stream, seen in the previous subsection. The
grammar in Figure 13 imports the generic layout grammar, and provides concrete im-
plementations for the abstract islands and reef defined in that grammar.
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Using the bridge grammar, the bridge parser derives a bridge model from the token
stream (illustrated in the previous subsection). Because of ambiguous interpretations,
there may be multiple possible token streams. By assigning island and reef classes that
may encompass multiple node types, some of these can be eliminated. In case more than
one alternative remains, we currently pick the interpretation with the fewest number of
broken bridges.

5.3 Deriving Bridge Parser Specifications

SDF grammars are fully declarative, and do not allow semantic actions or callbacks
to native code. This property makes SDF grammars well-suited for analysis. In previ-
ous work we applied automated analysis of SDF grammars to derive recovery produc-
tions [12]. To help language engineers efficiently employ bridge parsing with an SDF
grammar, we do the same for a bridge parser specification.

Island definitions are central to the bridge parser specification. Typical candidates
for island definitions are scoping constructs, such as { } in curly brace programming
languages. Scoping constructs are generally nestable structures, which means that their
grammar productions are recursive. For example, scopes in Java are defined as follows:

"{" BlockStm* "}" -> Block {cons("Block")}
Block -> Stm
Stm => BlockStm

We consider a productionp «« § B 7 —> S to define a scoping construct for opening
literal « and closing literal 3 to form a scoping construct if the following conditions are
satisfied:

— the production is recursive;
— literals & and (3 are not identical;
— literals o and 3 appear only in productions of the formp a ¢ 8 7 -> S where «

and [ are not part of patterns p, g, or T;

— the literals do not appear in a production with the {bracket} annotation.

The second condition excludes literals such as ™ in shell scripts, since they are typically
not nestable. The third condition ensures that we only select literals that appear in a
balanced fashion throughout the grammar, ensuring that the bridge parser does not try to
introduce opening or closing literals for unbalanced literals. The final condition ensures
that we do not select constructs that define parentheses. Unlike scopes, parentheses
(marked with the {bracket} annotation in SDF) have no direct semantic meaning other
than modifying the priority of other operators. Because of this property, parentheses are
typically not indented the same way as scopes.

For each opening and closing literal, we generate island definitions and bridge rules
similar to those in Figure 13. To complete the bridge parsing specification, we also
generate reef rules for all reserved words in the language. Reserved words in SDF are
defined using a {reject} annotation that indicates they cannot be used as an identifier.
For composed languages where these words may not be globally reserved; the bridge
parser then considers both interpretations.

Automatically deriving recovery rules helps maintain a valid, up-to-date recovery
rule set as languages evolve and are extended or embedded into other languages. Gram-
mar engineers may also customize the derived specification to handle further cases and
to introduce different indentation styles.
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5.4 Combining Fine-grained Error Recovery and Bridge Parsing

Bridge parsing excels at correcting scope errors, while fine-grained recovery is the des-
ignated approach to recover more localized errors like a missing semicolon. In case
the erroneous region contains both types of errors, a combination of both techniques is
required to find an optimal recovery. To do this, we extend the fine-grained recovery
process to handle suggestions provided by the bridge parser. Each suggestion gives rise
to an extra stack branch that is explored in parallel with the other recovery branches. In
this way, the bridge parser suggestions are taken into account, but only applied if they
lead to a least-cost recovery.

6 Evaluation

We implemented our approach based on JSGLR, a Java implementation of SGLR [11],
extending it with support for coarse-grained recovery and refining the support for recov-
ery rules of [12]. The bridge parser implementation, also written in Java, is based on the
implementation of [20], and adapted to support ambiguous token streams and recovery
of regions rather than complete files. We evaluate our error recovery according to the
criteria set out in Section 2. We study the quantitative criteria through evaluation of the
parser using a set of test files written in Java. Java was selected because of its ubiquity in
software development and in modern IDEs such as the Eclipse JDT, offering a challeng-
ing comparison. We will also argue that our approach satisfies the qualitative criteria of
providing good feedback, flexibility, language independence, and transparency.

Construction of the Test Set We evaluate using an extended version of the test set
used in [20]. The base test set was originally constructed for testing structural recov-
ery of Java code, and focused on syntax errors such as missing braces pr parenthesis.
The extended test set includes tests for both structural and non-structural errors, and is
available from [1]. We intentionally included some cases with inconsistent use of inden-
tation, since those are difficult to handle for the bridge parser, i.e. basic layout recovery
depends on good indentation information. The test set contains three major categories
of tests; missing — structural tokens for grouping, closure or division are missing (65
tests), extra — there are too many structural tokens (8 tests), and other — remaining er-
rors like erroneous statement, or missing comment end (3 tests). Together, these total to
a set of 76 test cases.

Setting up the Experiment All tests are run in an automated fashion, comparing the
pretty-printed ASTs for the erroneous files to the pretty-printed ASTs for the original,
correct files they were derived from. We use two methods for comparison: First, we
do a manual inspection, following the quality criteria of Pennello and DeRemer [22].
Following these criteria, an excellent recovery is one that is exactly the same as the
intended program, a good recovery is close to this result, and a poor recovery intro-
duces spurious errors. Since this is arguably a subjective comparison, we also count the
number of lines of code that changed in the recovered result (the “diff”’). The advantage
of this approach is that it is objective, and assigns a larger penalty to recoveries where
a larger area of the text does not correspond or is placed in an incorrect scope. The
resulting figures are also arguably easier to interpret than comparing tree distances.
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Fig. 14. Quality of Recovery The x axis shows percentage of tests. Each bar shows
the percentage of recoveries which where excellent, non-excellent or failed for each
approach. CG - Coarse Grained, FG - Fine Grained, BP - Bridge Parsing, JDT - Java
Developer Toolkit

Various Approaches We compare the integrated recovery approach presented in this
paper to different configurations of the individual techniques and to the parser used
by Eclipse’s JDT. We apply the test set with the following parser configurations; the
JDT parser; the JDT parser with a bridge parser (BP) preprocessor, as suggested in [20]
(BP—JDT); our approach without using bridge parsing (Course Grained (CG) — Fine
Grained (FG)); our approach with the bridge parser as a preprocessor (BP—CG—FG);
the fully integrated approach (CG—BP+FG); and finally the same approach with a
tuned bridge parser specification (CG—BPy,,,,+FG).

Except for the final configuration, the three SGLR-based parsers use fully automat-
ically derived recovery specifications. In contrast, specialized, handwritten recovery
rules and classes related to recovery are used for the JDT parser. For the tests we used
the JDT parser with statement-level recovery enabled, following [15]. In some of the
test cases, particularly those with multiple errors, the parser was unable to recover the
entire body of a method. For content completion, Eclipse uses a secondary parser that
can analyze these method bodies. Because of its specialized nature, we have not in-
cluded it in our experiments. Both the bridge parser used as a preprocessor and the one
integrated into SGLR use the same recovery rules and node types.

Results The diff values acquired for the various approaches are shown in Figure 15
and the same values with a quality distinction are shown in Figure 14. Considering both
diagrams, we see that the SGLR parser, parsing using different steps and granularity,
consistently outperforms the JDT parser. When fully integrated with the bridge parser,
the best results are obtained.

Using the bridge parser in a preprocessor setting was shown to be effective for a
number of different parsers in [20]. For the JDT parser, we can see that the results
are improved using the bridge parser as a preprocessor. When combined with SGLR,
however, we see that the preprocessing approach does not work well. We speculate that
these results arise because the bridge parser can only insert braces to recover scopes,
never remove them, since it does not have enough knowledge of the complete language.
However, when it is actually integrated into SGLR, the bridge parser’s suggestions lead
to the best results. Manual inspection of the non-excellent results for each approach
reveals more in-depth knowledge:

— JDT (49 missing, 4 extra, 2 other): A majority of the cases are in the missing

category. The most common recovery is for JDT to skip the whole content of a

TUD-SERG-2009-024 15



Natural and Flexible Error Recovery for Generated Parsers

16

JDT BP—JDT CG—FG
100 | | | | 100 | | | | 100 | | | |
50 <1 50 -1 50 R
0 J—FJ—P 0 J—F—-—P 0
BP—-CG—FG CG—BP+FG CG—BP:un+FG
100 | | | | 100 | | | | 100 | | | |
50 n
0

S v 3N S 9>~ S v 3N

Fig. 15. Diffs for Various Approaches The y axis shows percentage of tests and the y
axis shows categories of number of diff lines — No diff (0), Small diff (1 — 10), Medium
diff (11 — 20) and Large diff (> 20). CG - Coarse Grained, FG - Fine Grained, BP -
Bridge Parsing, JDT - Java Developer Toolkit

block if there is an error. This explains why the diff values for JDT tend to be
higher.

— BP—JDT (34 missing, 5 extra, 2 other): The bridge parser helps to reduce the
number of cases in the missing category. However, it fails to improve cases which
are of out of scope for the bridge parser, for example, missing semicolons or extra
structural tokens.

— CG—FG (24 missing, 4 extra, 3 other): Also has a majority of cases in the missing
category, particularly missing braces (both start and end).

- BP—-CG—FG (27 missing, 5 extra, 3 other): This combination does not work
out very well. The bridge parser manages to slightly improve cases in the missing
category, but makes things worse in some of the other cases.

— CG—BP+FG (8 missing, 3 extra, 3 other): This is the best option. The robust-
ness of SGLR evens out the rough edges of the bridge parser, using it more like a
consultant and discarding bad advice. In practice, this means that tests in the miss-
ing category see a huge improvement. There is a slight improvement in the extra
category, while the others categories stay the same.

- CG—BP;,,+FG (8 missing, 3 extra, 3 other): There are no visible changes using
this tuned bridge parser. The partial recoveries performed by the bridge parser show
a small improvement, i.e., if there is more than one error one of the two gets a better
recovery but the end result is the same.

Our experiments have not indicated that using a “tuned” bridge parser specification
helps results. Tuning in this context can be quite tricky due to the various uses of, for
example, a keyword. Turning all keywords into reefs will potentially ruin recoveries.
For example, considering a for loop missing a left parenthesis, with too many keywords
defined as reefs, the bridge parser might insert a left parenthesis too early. If both int
and for are keywords and there is a rule stating that a recovery shall not pass a reef, then
the left parenthesis will be inserted before the int and not before the for. This indicates
that keywords must be chosen with care and the set should probably be quite small.
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Concerning the selection of error fragments by the coarse grained recovery ap-
proach, manual inspection revealed that the right segment is identified for most of the
test cases — both in position and size. Generally, however, there can be cases where
selecting the right error fragment is difficult, which can result in a poor recovery.

While we have not performed an in-depth performance study, we set a maximum
of 1 second for completing each test run, to allow for good responsiveness when used
in an interactive environment (where the parser runs in a background thread). All tests
complete within this time limit. The pathological cases previously identified for the
Stratego-Java language [30] used to take much longer than this time limit [12], but with
the addition of the coarse-grained recovery mechanism now also complete within this
time limit. By constraining the expensive fine-grained recovery rules to a small region,
setting an upper bound for the number of cases to consider per region, and introducing
the possibility to fall back to discarding an entire region, the performance issues seem
to have been resolved.

The Impact of Indentation Usage Since our approach depends on layout, one issue
to address is robustness in case of inconsistent indentation. The tab size used greatly
affects the indentation levels in a file. The tab size might change, and tabs and white
spaces are often mixed. IDEs such as Eclipse can automatically insert spaces for tabs
and maintain indentation settings per project, avoiding some of these problems. Possible
strategies for more robustness are: 1) Using averages to determine the indentation shift,
and in that way handle different indentation shifts within a file or project. 2) Rounding
off exact indentation offsets to their approximate indentation level. Some times the exact
indentation position has an off-by-one position, e.g., there might be three spaces when
the indentation shift is four. This situation can cause indentation matching problems.
The two strategies can be combined, normalizing the indentation levels to match the
indentation shift in the rest of the file or fragment.

Qualitative Evaluation When working with interactive parsing the most important
thing is to provide a good service to the user. We integrated our approach into Eclipse
based on the Spoofax/IMP editor environment [13]. Based on the recovery productions,
the editor gives accurate feedback. Following [12], every class of recovery rule is asso-
ciated with a particular message (e.g., “} expected”).

For the language engineer, flexibility, language independence, and transparency of
the approach are important qualitative criteria. Our approach is highly flexible as it
allows for customization of the high-level bridge parsing and recovery rules specifica-
tions. Yet, it maintains language independence by deriving defaults for these specifi-
cations, ensuring it is in line with the expectations of parser generators. By deriving
explicit, customizable specifications, the approach is also highly transparent.

7 Related Work

In previous work, we introduced error recovery for SGLR, based on parse error produc-
tions that can be automatically derived from a grammar [12], and described its integra-
tion in Spoofax/IMP [13]. The present paper refines this work, constraining the applica-
tion of recovery rules to coarse-grained regions and adding support for bridge parsing.
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Bridge parsing was previously applied purely as a preprocessor for other parsers [20],
ensuring that it repaired scope-related errors before other errors are recovered. We found
that this approach was ineffective in combination with the production-based recovery
approach of SGLR (see Section 6). Furthermore, using a scanner, the bridge parser was
unable to cope with the lexical complexity of composed languages. The present work
introduces a scannerless tokenizer and fully integrates the bridge parser into SGLR to
address these issues.

Using SGLR parsing, our approach can be used to parse languages with a com-
plex lexical syntax and composed languages. In related work, only a study by Valker-
ing [26], based on substring parsing [23], offered a partial approach to error recovery
with SGLR parsing. Composed languages are also supported by parsing expression
grammars (PEGs) [9]. PEGs lack the disambiguation facilities [29] that SDF provides
for SGLR. Instead, they use greedy matching and enforce an explicit ordering of pro-
ductions. To our knowledge, no automated form of error recovery has been defined for
PEGs. However, existing work on error recovery using parser combinators [25] may be
a promising direction for recovery in PEGs. Furthermore, based on the ordering prop-
erty of PEGS, a “catch all” clause is sometimes added to a grammar, which is used if
no other production succeeds. Such a clause can skip erroneous content up to a specific
point (such as a newline) but does not offer the flexibility of our approach.

There are several different forms of error recovery techniques for LR parsing [7].
These techniques can be divided in correcting and non-correcting techniques. The most
common non-correcting technique is panic mode. On detection of an error, the input
is discarded until a synchronization token is reached. Then, states are popped from the
stack until the state at the top enables the resumption of the parsing process. Our coarse-
grained recovery algorithm can be used in a similar fashion, but selects discardable
regions discarded based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or delete
tokens nearby the location of an error, until parsing can resume. Successful recovery
mechanisms often combine more than one technique [7]. For example, panic mode is
often used as a fall back method if the correction attempts fail.

Burke and Fisher [4] present a method based on three phases of recovery. The first
phase looks for simple correction by the insertion or deletion of a single token. If this
does not lead to a recovery, one or more open scopes are closed. The last phase con-
sists of discarding tokens that surround the parse failure location. We improve on their
work by taking indentation into account, for the scope recovery using an adapted ver-
sion of bridge parsing [20], as well as for the coarse recover technique. In addition, by
starting with region selection, the performance as well as the quality of the fine-grained
technique [12], is improved.

Regional error recovery methods [16,18,21] select a region that encloses the point
of detection of an error. Typically, these regions are selected based on nearby marker to-
kens (also called fiducial tokens [21]), which are language-dependent. In our approach,
we assign regions based on layout instead.

The LALR Parser Generator (LPG) [5] is incorporated into IMP [6] and is used as
a basis for the Eclipse JDT parser. LPG can derive recovery behavior from a grammar,
and supports recovery rules in the grammar and through semantic actions. Like our
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approach, LPG detects scopes in grammars. However, unlike our approach, it does not
take indentation into account for scope recovery.

8 Conclusion

Source code has a hierarchical structure that generally is reflected in the usage of layout
and indentation. We have shown that this property can be exploited to confine syntax
errors to small regions of code, and to provide better, more natural error recovery sug-
gestions. Our approach to error recovery provides language independence by automat-
ically deriving language-specific recovery behavior from grammars. Yet by allowing
customization of the recovery behavior, using fine-grained recovery rules and a high-
level bridge parsing specification, the approach maintains flexibility.
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