
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Natural and Flexible Error Recovery for
Generated Modular Language

Environments

Maartje de Jonge, Lennart C.L. Kats, Emma Soderberg, and
Eelco Visser

Report TUD-SERG-2012-021

SERG

TUD-SERG-2012-021

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in TOPLAS

c© copyright 2012, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

A

Natural and Flexible Error Recovery
for Generated Modular Language Environments

MAARTJE DE JONGE, LENNART C. L. KATS and EELCO VISSER, Technical University Delft
EMMA SÖDERBERG, Lund University

Integrated development environments (IDEs) increase programmer productivity, providing rapid, interactive feedback based
on the syntax and semantics of a language. Unlike conventional parsing algorithms, scannerless generalized-LR parsing
supports the full set of context-free grammars, which is closed under composition, and hence can parse languages composed
from separate grammar modules. To apply this algorithm in an interactive environment, this paper introduces a novel error
recovery mechanism. Our approach is language-independent, and relies on automatic derivation of recovery rules from
grammars. By taking layout information into consideration it can efficiently suggest natural recovery suggestions.

Categories and Subject Descriptors: D.2.3 [Software Engineering]: Coding Tools and Techniques—program editors; D.2.6
[Software Engineering]: Programming Environments—Interactive environments; D.3.1 [Programming Languages]: For-
mal Definitions and Theory—Syntax

General Terms: Languages, Algorithms, Design

Additional Key Words and Phrases: Error recovery, generalized parsing

1. INTRODUCTION
Integrated Development Environments (IDEs) increase programmer productivity by combining a
rich toolset of generic language development tools with services tailored for a specific language.
These services provide programmers rapid, interactive feedback based on the syntactic structure
and semantics of the language. High expectations with regard to IDE support place a heavy burden
on the shoulders of developers of new languages.

One burden in particular for textual languages is the development of a parser. Modern IDEs
use a parser to obtain the syntactic structure of a program with every change that is made to it,
ensuring rapid syntactic and semantic feedback as a program is edited. As programs are often in a
syntactically invalid state as they are edited, parse error recovery is needed to diagnose and report
parse errors, and to construct a valid abstract syntax tree (AST) for syntactically invalid programs.
Thus, to successfully apply a parser in an interactive setting, proper parse error recovery is essential.

The development and maintenance costs of complete parsers with recovery support are often
prohibitive when general-purpose programming languages are used for their construction. Parser
generators address this problem by automatically generating a working parser from a grammar
definition. They significantly reduce the development time of the parser and the turnaround time for
changing it as a language design evolves.

In this paper we show how generated parsers can both be general – supporting the full class of
context-free languages – and automatically provide support for error recovery. Below we elaborate
on these aspects, describe the challenges in addressing them together, and give an overview of our
approach.

Generalized parsers. A limitation of most parser generators is that they only support certain
subclasses of the context-free grammars, such as LL(k) grammars or LR(k) grammars, reporting
conflicts for grammars outside that grammar class. Such restrictions on grammar classes make it
harder to change grammars – requiring refactoring – and prohibit the composition of grammars as
only the full class of context-free grammars is closed under composition [Kats et al. 2010].

Generalized parsers such as generalized LR support the full class of context-free grammars
with strict time complexity guarantees1. By using scannerless GLR (SGLR) [Visser 1997b], even
scanner-level composition problems such as reserved keywords are avoided.

1Generalized LR [Tomita 1988] parses deterministic grammars in linear time and gracefully copes with non-determinism
and ambiguity with a cubic worst-case complexity.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 1

A:2 M. de Jonge et al.

Error recovery. To provide rapid syntactic and semantic feedback, modern IDEs interactively
parse programs as they are edited. A parser runs in the background with each key press or after a
small delay passes. As the user edits a program, it is often in a syntactically invalid state. Users
still want editor feedback for the incomplete programs they are editing, even if this feedback is
incomplete or only partially correct. For services that apply modifications to the source code such
as refactorings, errors and warnings can be provided to warn the user about the incomplete state
of the program. These days, the expected behavior of IDEs is to provide editor services, even for
syntactically invalid programs.

Parse error recovery techniques can diagnose and report parse errors, and can construct a valid
AST for programs that contain syntax errors [Degano and Priami 1995]. The recovered AST forms a
speculative interpretation of the program being edited. Since all language specific services crucially
depend on the constructed AST, the quality of this AST is decisive for the quality of the feedback
provided by these services. Thus, to successfully apply a parser in an interactive setting, proper
parse error recovery is essential.

Challenges. Three important criteria for the effectiveness and applicability of parser generators
for use in IDEs are 1) the grammar classes they support, 2) the performance guarantees they provide
for those grammar classes, and 3) the quality of the syntax error recovery support they provide. Parse
error recovery for generalized parsers such as SGLR has been a long-standing open issue. In this
paper we implement an error recovery technique for generalized parsers, thereby showing that all
three criteria can be fulfilled.

The scannerless, generalized nature of SGLR parsers poses challenges for the diagnosis and re-
covery of errors. We have identified two main challenges. First, generalized parsing implies parsing
multiple branches (representing different interpretations of the input) in parallel. Syntax errors can
only be detected at the point where the last branch failed, which may not be local to the actual root
cause of an error, increasing the difficulty of diagnosis and recovery. Second, scannerless parsing
implies that there is no separate scanner for tokenization and that errors cannot be reported in terms
of tokens, but only in terms of characters. This results in error messages about a single erroneous
character rather than an unexpected or missing token. Moreover, common error recovery techniques
based on token insertion and deletion are ineffective when applied to characters, as many insertions
or deletions are required to modify complete keywords, identifiers, or phrases. Together, these two
challenges make it harder to apply traditional error recovery approaches, as scannerless and gen-
eralized parsing increases the search space for recovery solutions and makes it harder to diagnose
syntax errors and identify the offending substring.

Approach overview. In this paper we address the above challenges by introducing additional “re-
covery” production rules to grammars that make it possible to parse syntax-incorrect inputs with
added or missing substrings. These rules are based on the principles of island grammars (Section 3).
We show how these rules can be specified and automatically derived (Section 4), and how with
small adaptations to the parsing algorithm, the added recovery rules can be activated only when
syntax errors are encountered (Section 5). By using the layout of input files, we improve the quality
of the recoveries for scoping structures (Section 6), and ensure efficient parsing of erroneous files
by constraining the search space for recovery rule applications (Section 7).

Contributions. This paper integrates and updates our work on error recovery for scannerless,
generalized parsing [Kats et al. 2009; de Jonge et al. 2009] and draws on our work on bridge pars-
ing [Nilsson-Nyman et al. 2009]. We implemented our approach based on the modular syntax defini-
tion formalism SDF [Heering et al. 1989; Visser 1997c] and JSGLR2, a Java-based implementation
of the SGLR parsing algorithm. The present paper introduces general techniques for the implemen-
tation of an IDE based on a scannerless, generalized parser, and evaluates the recovery approach
using automatic syntax error seeding to generate representative test sets for multiple languages.

2http://strategoxt.org/Stratego/JSGLR/.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

2 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:3

public class Authentication {
public String getPasswordHash(String user) {
SQL stm = <| SELECT password FROM Users

WHERE name = ${user} |>;
return database.query(stm);

}
}

Fig. 1. An extension of Java with SQL queries.

webdsl-action-to-java-method:
|[action x_action(farg*) { stat* }]| ->
|[public void x_action(param*) { bstm* }]|
with param* := <map(action-arg-to-java)> farg*;

bstm* := <statements-to-java> stat*

Fig. 2. Program transformation using embedded object language syntax.

2. COMPOSITE LANGUAGES AND GENERALIZED PARSING
Composite languages integrate elements of different language components. We distinguish two
classes of composite languages: language extensions and embedded languages. Language exten-
sions extend a base language with new, often domain-specific elements. Language embeddings
combine two or more existing languages, allowing one language to be nested in the other.

Examples of language extensions include the addition of traits [Ducasse et al. 2006] or as-
pects [Kiczales et al. 1997] to object-oriented languages, enhancing their support for adaptation
and reuse of code. Other examples include new versions of a language, introducing new features to
an existing language, such as Java’s enumerations and lambda expressions.

Examples of language embeddings include database query expressions integrated into an existing,
general-purpose language such as Java [Bravenboer et al. 2010]. Such an embedding both increases
the expressiveness of the host language and facilitates static checking of queries. Figure 1 illustrates
such an embedding. Using a special quotation construct, an SQL expression is embedded into Java.
In turn, the SQL expression includes an anti-quotation of a Java local variable. By supporting the
notion of quotations in the language, a compiler can distinguish between the static query and the
variable, allowing it to safeguard against injection attacks. In contrast, when using only a basic Java
API for SQL queries constructed using strings, the programmer must take care to properly filter any
values provided by the user.

Language embeddings are sometimes applied in meta-programming for quotation of their object
language [Visser 2002]. Transformation languages such as Stratego [Bravenboer et al. 2008] and
ASF+SDF [van den Brand et al. 2002] allow fragments of a language that undergoes transformation
to be embedded in the specification of rewrite rules. Figure 2 shows a Stratego rewrite rule that
rewrites a fragment of code from a domain-specific language to Java. The rule uses meta-variables
(written in italics) to match “action” constructs and rewrites them to Java methods with a similar
signature. SDF supports meta-variables by reserving identifier names in the context of an embedded
code fragment.

2.1. Parsing Composite Languages
The key to effective realization of composite languages is a modular, reusable language descrip-
tion, which allows constituent languages to be defined independently, and then composed to form a
whole.

A particularly difficult problem in composing language definitions is composition at the lexical
level. Consider again Figure 2. In the embedded Java language, void is a reserved keyword. For
the enclosing Stratego language, however, this name is a perfectly legal identifier. This difference
in lexical syntax is essential for a clean and safe composition of languages. It is undesirable that the
introduction of a new language embedding or extension invalidates existing, valid programs.

The difficulty in combining languages with a different lexical syntax stems from the traditional
separation between scanning and parsing. The scanner recognizes words either as keyword tokens

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 3

A:4 M. de Jonge et al.

or as identifiers, regardless of the context. In the embedding of Java in Stratego this would imply that
void becomes a reserved word in Stratego as well. Only using a carefully crafted lexical analysis for
the combined language, introducing considerable complexity in the lexical states to be processed,
can these differences be reconciled. Using scannerless parsing [Salomon and Cormack 1989; 1995],
these issues can be elegantly addressed [Bravenboer et al. 2006].

The Scannerless Generalized-LR (SGLR) parsing algorithm [Visser 1997b] realizes scanner-
less parsing by incorporating the generalized-LR parsing algorithm [Tomita 1988]. GLR supports
the full class of context-free grammars, which is closed under composition, unlike subsets of the
context-free grammars such as LL(k) or LR(k). Instead of rejecting grammars that give rise to
shift/reduce and reduce/reduce conflicts in an LR parse table, the GLR algorithm interprets these
conflicts by efficiently trying all possible parses of a string in parallel, thus supporting grammars
with ambiguities, or grammars that require more look-ahead than incorporated in the parse table.
Hence, the composition of independently developed grammars does not produce a grammar that is
not supported by the parser, as is frequently the case with LL or LR based parsers.3

Language composition often results in grammars that contain ambiguities. Generalized parsing
allows declarative disambiguation of ambiguous interpretations, implemented as a filter on the parse
tree, or rather the parse forest. As an alternative to parsing different interpretations in parallel,
backtracking parsers revisit points of the file that allow multiple interpretations. Backtrack parsing
is not generalized parsing since a backtracking parser only explores one possible interpretation at a
time, stopping as soon as a successful parse has been found. In the case of ambiguities, alternative
parses are hidden, which precludes declarative disambiguation.

Non-determinism in grammars can negatively affect parser performance. With traditional back-
tracking parsers, this would lead to exponential execution time. Packrat parsers use a form of back-
tracking with memoization to parse in linear time [Ford 2002]; but, as with other backtracking
parsers, they greedily match the first possible alternative instead of exploring all branches in an am-
biguous grammar [Schmitz 2006]. In contrast, GLR parsers explore all branches in parallel and run
in cubic time in the worst case. Furthermore, they have the attractive property that they parse the
subclass of deterministic LR grammars in linear time. While scannerless parsing tends to introduce
additional non-determinism, the implementation of parse filters during parsing rather than as a pure
post-parse filter eliminates most of this overhead [Visser 1997a].

2.2. Defining Composite Languages
The syntax definition formalism SDF [Heering et al. 1989; Visser 1997c] integrates lexical syn-
tax and context-free syntax supported by SGLR as the parsing algorithm. Undesired ambiguities in
SDF2 definitions can be resolved using declarative disambiguation filters specified for associativity,
priorities, follow restrictions, reject, avoid and prefer productions [van den Brand et al. 2002]. Im-
plicit disambiguation mechanisms such as ‘longest match’ are avoided. Other approaches, including
PEGs [Ford 2002], language inheritance in MontiCore [Krahn et al. 2008], and the composite gram-
mars of ANTLR [Parr and Fisher 2011], implicitly disambiguate grammars by forcing an ordering
on the alternatives of a production — the first (or last) definition overrides the others. Enforcing
explicit disambiguation allows undesired ambiguities to be detected, and explicitly addressed by a
developer. This characteristic benefits the definition of non-trivial grammars, in particular the defi-
nition of grammars that are composed from two or more independently developed grammars.

SDF has been used to define various composite languages, often based on mainstream languages
such as C/C++ [Waddington and Yao 2007], PHP [Bravenboer et al. 2007], and Java [Bravenboer
and Visser 2004; Kats et al. 2008]. The example grammar shown in Figure 3 extends Java with
embedded SQL queries. It imports both the Java and SQL grammars, adding two new productions
that integrate the two. In SDF, grammar productions take the form p1...pn -> s and specify that

3Note that Schwerdfeger and Van Wyk [2009] have shown that for some LR grammars it is possible to statically determine
whether they compose. They claim that if you accept some restrictions on the grammars, the composition of the “indepen-
dently developed grammars” will not produce conflicts.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

4 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:5

module Java-SQL
imports
Java
SQL

exports context-free syntax
"<|" Query "|>" -> Expr {cons("ToSQL")}
"${" Expr "}" -> SqlExpr {cons("FromSQL")}

Fig. 3. Syntax of Java with embedded SQL queries, adapted from [Bravenboer et al. 2010]. The ‘cons’ annotation defines
the name of the constructed ATerm.

a sequence of strings matching symbols p1 to pn matches the symbol s. The productions in this
particular grammar specify a quotation syntax for SQL queries in Java expressions, and vice versa
an anti-quotation syntax for Java expressions inside SQL query expressions. The productions are
annotated with the {cons(name)} annotation, which indicates the constructor name used to label
these elements when an abstract syntax tree is constructed.

3. ISLAND GRAMMARS
Island grammars [van Deursen and Kuipers 1999; Moonen 2001; 2002] combine grammar pro-
duction rules for the precise analysis of parts of a program and selected language constructs with
general rules for skipping over the remainder of an input. Island grammars are commonly applied
for reverse engineering of legacy applications, for which no formal grammar may be available, or for
which many (vendor-specific) dialects exist [Moonen 2001]. In this paper we use island grammars
as inspiration for error recovery using additional production rules.

Using an island grammar, a parser can skip over any uninteresting bits of a file (“water”), includ-
ing syntactic errors or constructs found only in specific language dialects. A small set of declara-
tive context-free production rules specifies only the interesting bits (the “islands”) that are parsed
“properly”. Island grammars were originally developed using SDF [van Deursen and Kuipers 1999;
Moonen 2001]. The integration of lexical and context-free productions of SDF allows island gram-
mars to be written in a single, declarative specification that includes both lexical syntax for the
definition of water and context-free productions for the islands. A parser using an island grammar
behaves similar to one that implements a noise-skipping algorithm [Lavie and Tomita 1993]. It can
skip over any form of noise in the input file. However, using an island grammar, this logic is entirely
encapsulated in the grammar definition itself.

Figure 4 shows an SDF specification of an island grammar that extracts call statements from
COBOL programs. Any other statements in the program are skipped and parsed as water. The first
context-free production of the grammar defines the Module symbol, which is the start symbol of
the grammar. A Module is a sequence of chunks. Each Chunk, in turn, is parsed either as a patch of
WATER or as an island, in the form of a Call construct. The lexical productions define patterns for
layout, water, and identifiers. The layout rule, using the special LAYOUT symbol, specifies the kind
of layout (i.e. whitespace) used in the language. Layout is ignored by the context-free syntax rules,
since their patterns are automatically interleaved with optional layout. The WATER symbol is defined
as the inverse of the layout pattern, using the ˜ negation operator. Together, they define a language
that matches any given character stream.

The parse tree produced for an island is constrained using disambiguation filters that are part of
the original SDF specification [van den Brand et al. 2002]. First, the {avoid} annotation on the
WATER rule specifies a disambiguation filter for these productions, indicating that the production is
to be avoided, e.g., at all times, a non-water Chunk is to be preferred. Second, the lexical restrictions
section specifies a restriction for the WATER symbol. This rule ensures that water is always greedily
matched, and never followed by any other water character.

The following example illustrates how programs are parsed using an island grammar:
CALL CKOPEN USING filetable, status

Given this COBOL fragment, a generalized parser can construct a parse tree — or rather a parse
forest — that includes all valid interpretations of this text. Internally, the parse tree includes the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 5

A:6 M. de Jonge et al.

module ExtractCalls
exports
context-free start-symbols

Module
context-free syntax

Chunk* -> Module {cons("Module")}
WATER -> Chunk {cons("WATER")}
"CALL" Id -> Chunk {cons("Call")}

lexical syntax
[\ \t\n] -> LAYOUT
˜[\ \t\n]+ -> WATER {avoid}
[a-zA-Z][a-zA-Z0-9]* -> Id

lexical restrictions
WATER -/- [A-Za-z0-9]

Fig. 4. An island grammar for extracting calls from a legacy application; adapted from [Moonen 2001].

Fig. 5. The unfiltered abstract syntax tree for a COBOL statement, constructed using the ExtractCalls grammar.

complete character stream, all productions used, and their annotations. In this paper, we focus on
abstract syntax trees (derived from the parse trees) where only the {cons(name)} constructor labels
appear in the tree. Figure 5 shows the complete, ambiguous AST for our example input program.
Note in particular the amb node, which indicates an ambiguity in the tree: CALL CKOPEN in our
example can be parsed either as a proper Call statement or as WATER. Since the latter has an {avoid}

annotation in its definition, a disambiguation filter can be applied to resolve the ambiguity. Normally,
these filters are applied automatically during or after parsing.

4. PERMISSIVE GRAMMARS
As we have observed in the previous section, there are many similarities between a parser using
an island grammar and a noise-skipping parser. In the former case, the water productions of the
grammar are used to “fall back” in case an input sentence cannot be parsed, in the latter case,
the parser algorithm is adapted to do so. While the technique of island grammars is targeted only
towards partial grammar definitions, this observation suggests that the basic principle behind island
grammars may be adapted for use in recovery for complete, well-defined grammars.

In the remainder of this section, we illustrate how the notion of productions for defining “water”
can be used in regular grammars, and how these principles can be further applied to achieve alter-
native forms of recovery from syntax errors. We are developing this material in an example-driven
way in the sections 4.1 to 4.3. Then, in Section 4.4, we explain how different forms of recovery

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

6 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:7

module Java-15
exports
lexical syntax
[\ \t\12\r\n] -> LAYOUT
"\"" StringPart* "\"" -> StringLiteral
"/*" CommentPart* "*/" -> Comment
Comment -> LAYOUT
...

context-free syntax
"if" "(" Expr ")" Stm -> Stm {cons("If")}
"if" "(" Expr ")" Stm "else" Stm -> Stm {cons("IfElse"), avoid}
...

Fig. 6. Part of the standard Java grammar in SDF; adapted from [Bravenboer et al. 2006].

can be combined. Finally, in Section 4.5 we discuss automatic derivation of recovery rules from the
grammar, while Section 4.6 explains how the set of generated recovery rules can be customized by
the language developer.

Without loss of generality, we focus many of our examples on the familiar Java language. Figure 6
shows a part of the SDF definition of the Java language. SDF allows the definition of concrete and
abstract syntax in a single framework. The mapping between concrete syntax trees (parse trees)
and abstract syntax trees is given by the {cons(name)} annotations. Thus, in the given example,
the {cons("If")} and {cons("IfElse")} annotations specify the name of the constructed abstract
syntax terms. Furthermore, the abstract syntax tree does not contain redundant information such as
layout between tokens and literals in a production. The {avoid} annotation in the second context-
free production is used to explicitly avoid the “dangling else problem”, a notorious ambiguity that
occurs with nested if/then/else statements. Thus, the {avoid} annotation states that the interpretation
of an IfElse term with a nested If subterm, must be avoided in favour of the alternate interpretation,
i.e. an If term with a nested IfElse subterm. Indeed, Java can be parsed without the use of SGLR,
but SGLR has been invaluable for extensions and embeddings based on Java such as those described
in [Bravenboer and Visser 2004; Bravenboer et al. 2006].

4.1. Chunk-Based Water Recovery Rules
Island grammars rely on constructing a grammar based on coarse-grained chunks that can be parsed
normally or parsed as water and skipped. This structure is lacking in normal, complete grammars,
which tend to have a more hierarchical structure. For example, Java programs consist of one or
more classes that each contain methods, which contain statements, etc. Still, it is possible to impose
a more chunk-like structure on existing grammars in a coarse-grained fashion: for example, in Java,
all statements can be considered as chunks.

Figure 7 extends the standard Java grammar with a coarse-grained chunk structure at the statement
level. In this grammar, each Stm symbol is considered a “chunk,” which can be parsed as either a
regular statement or as water, effectively skipping over any noise that may exist within method
bodies. To ensure that water is always greedily matched, a follow restriction is specified (-/-),
expressing that the WATER symbol is never followed by another water character.

From Avoid to Recover Productions. As part of the original SDF specification, the {avoid} an-
notation is used to disambiguate parse trees produced by grammar productions. An example is the
“dangling else” disambiguation shown in Figure 6. In Figure 7, we use the {avoid} annotation on
the water production to indicate that preference should be given to parsing statements with reg-
ular productions. The key insight of permissive grammars is that this mechanism is sufficient, in
principle, to model error recovery.

However, in practice, there are two problems with the use of {avoid} for declaring error recov-
ery. First, {avoid} is also used in regular disambiguation of grammars. We want to avoid error
recovery productions more than ‘normal’ {avoid} productions. Second, {avoid} is implemented
as a post-parse filter on the parse forest produced by the parser. This is fine when ambiguities are
relatively local and few in number. However, noise-skipping water rules such as those in Figure 7

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 7

A:8 M. de Jonge et al.

module Java-15-Permissive-Avoid
imports Java-15
exports
lexical syntax
˜[\ \t\12\r\n]+ -> WATER {avoid}

lexical restrictions
WATER -/- ˜[\ \t\12\r\n]

context-free syntax
WATER -> Stm {cons("WATER")}

Fig. 7. Chunk-based recovery rules for Java using avoid.

module Java-15-Permissive-ChunkBased
imports Java-15
exports
lexical syntax

˜[\ \t\12\r\n]+ -> WATER {recover}
lexical restrictions

WATER -/- ˜[\ \t\12\r\n]
context-free syntax

WATER -> Stm {cons("WATER")}

Fig. 8. Chunk-based recovery rules using recover.

cause massive numbers of ambiguities; each statement can be interpreted as water or as a regular
statement, i.e. the parse forest should represent an exponential number of parse trees. While (S)GLR
is equipped to deal with ambiguities, their construction has a performance penalty, which is wasteful
when there are no errors to recover from.

Thus, we introduced the {recover} annotation in SDF to distinguish between the two different
concerns of recovery and disambiguation (Figure 8). The annotation is similar to {avoid}, in that
we are interested in parse trees with as few uses of {recover} productions as possible. Only in case
all remaining branches contain recover productions, a preferred interpretation is selected heuris-
tically by counting all occurrences of the {recover} annotation in the ambiguous branches, and
selecting the variant with the lowest count. Parse trees produced by the original grammar produc-
tions are always preferred over parse trees containing recover productions. Furthermore, {recover}
branches are disambiguated at runtime, and, to avoid overhead for error-free programs, are only
explored when parse errors occur using the regular productions. The runtime support for parsing
and disambiguation of recover branches is explained in Section 5.

Throughout this section we use only the standard, unaltered SDF specification language, adding
only the {recover} annotation.

Limitations of Chunk-Based Rules. We can extend the grammar of Figure 8 to introduce a chunk-
like structure at other levels in the hierarchical structure formed by the grammar, e.g. at the method
level or at the class level, in order to cope with syntax errors in different places. However, doing
so leads to a large number of possible interpretations of syntactically invalid (but also syntactically
valid) programs. For example, any invalid statement that appears in a method could then be parsed
as a “water statement.” Alternatively, the entire method could be parsed as a “water method.” A pre-
ferred interpretation can be picked based on the number of occurrences of the {recover} annotation
in the ambiguous branches.

The technique of selectively adding water recovery rules to a grammar allows any existing gram-
mar to be adapted. It avoids having to rewrite grammars from the ground up to be more “permissive”
in their inputs. Grammars adapted in this fashion produce parse trees even for inputs with syntax
errors that cannot be parsed by the original grammar. The WATER constructors in the ASTs indicate
the location of errors, which can then be straightforwardly reported back to the user.

While the approach we presented so far can already provide basic syntax error recovery, there are
three disadvantages to the recovery rules as presented here. Firstly, the rules are language-specific
and are best implemented by an expert of a particular language and its SDF grammar specification.
Secondly, the rules are rather coarse-grained in nature; invalid subexpressions in a statement cause
the entire statement to be parsed as water. Lastly, the additional productions alter the abstract syntax
of the grammar (introducing new WATER terminals), causing the parsed result to be unusable for tools
that depend on the original structure.

4.2. General Water Recovery Rules
Adapting a grammar to include water productions at different hierarchical levels is a relatively
simple yet effective way to selectively skip over “noise” in an input file. In the remainder of this
section, we refine this approach, identifying idioms for recovery rules.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

8 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:9

Most programming languages feature comments and insignificant whitespace that have no impact
on the logical structure of a program. They are generally not considered to be part of the AST. As
discussed in Section 3, any form of layout, which may include comments, is implicitly interleaved
in the patterns of concrete syntax productions. The parser skips over these parts in a similar fashion
to the noise skipping of island grammars. However, layout and comments interleave the context-free
syntax of a language at a much finer level than the recovery rules we have discussed so far. Consider
for example the Java statement
if (temp.greaterThan(MAX) /*API change pending*/)
fridge.startCooling();

in which a comment appears in the middle of the statement.
The key idea discussed in this section is to declare water tokens that may occur anywhere that

layout may occur. Using this idea, permissive grammars can be defined with noise skipping recovery
rules that are language-independent and more fine grained than the chunk-based recovery rules
above. To understand how this can be realized, we need to understand the way that SDF realizes
‘character-level grammars’.

Intermezzo: Layout in SDF. In SDF, productions are defined in lexical syntax or in context-free
syntax. Lexical productions are normal context-free grammar productions, i.e. not restricted to reg-
ular grammars. The only distinction between lexical syntax and context-free syntax is the role of
layout. The characters of an identifier (lexical syntax) should not be separated by layout, while lay-
out may occur between the sub-phrases of an if-then-else statement, defined in context-free syntax.

The implementation of SDF with scannerless parsing entails that individual characters are the
lexical tokens considered by the parser. Therefore, lexical productions and context-free produc-
tions are merged into a single context-free grammar with characters as terminals. The result is a
character-level grammar that explicitly defines all the places where layout may occur. For example,
the If production is defined in Kernel-SDF [Visser 1997c], the underlying core language of SDF, as
follows4:
syntax
"if" LAYOUT? "(" LAYOUT? Expr LAYOUT? ")" LAYOUT? Stm -> Stm {cons("If")}

Thus, optional layout is interleaved with the regular elements of the construct. It is not included in
the construction of abstract syntax trees from parse trees. Since writing productions in this explicit
form is tedious, SDF produces them through a grammar transformation, so that, instead of the
explicit rule above, one can write the If production as in Figure 6:
context-free syntax
"if" "(" Expr ")" Stm -> Stm {cons("If")}

Water as Layout. We can use the notion of interleaving context-free productions with optional
layout in order to define a new variation of the water recovery rules we have shown so far. Consider
Figure 9, which combines elements of the comment definition of Figure 6 and the chunk-based
recovery rules from Figure 8. It introduces optional water into the grammar, which interleaves the
context-free syntax patterns. As such, it skips noise on a much finer grained level than our previous
grammar incarnation. To separate patches of water into small chunks, each associated with its own
significant {recover} annotation, we distinguish between WATERWORD and WATERSEP tokens. The
production for the WATERWORD token allows to skip over identifier strings, while the production for
the WATERSEP token allows to skip over special characters that are neither part of identifiers nor
whitespace characters. The latter production is defined as an inverse pattern, using the negation
operator (˜). This distinction ensures that large strings, consisting of multiple words and special
characters, are counted towards a higher recovery cost.

As an example input, consider a programmer who is in the process of introducing a conditional
clause to a statement:

4We have slightly simplified the notation that is used for non-terminals in Kernel-SDF.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 9

A:10 M. de Jonge et al.

module Java-15-Permissive-Water
imports Java-15
exports
lexical syntax
[A-Za-z0-9_]+ -> WATERWORD {recover}
˜[A-Za-z0-9_\ \t\12\r\n] -> WATERSEP {recover}
WATERWORD -> WATER
WATERSEP -> WATER
WATER -> LAYOUT {cons("WATER")}

lexical restrictions
WATERWORD -/- [A-Za-z0-9_]

Fig. 9. Water recovery rules.

if (temp.greaterThan(MAX) // missing)
fridge.startCooling();

Still missing the closing bracket, the standard SGLR parser would report an error near the missing
character, and would stop parsing. Using the adapted grammar, a parse forest is constructed that
considers the different interpretations, taking into account the new water recovery rule. Based on
the number of {recover} annotations, the following would be the preferred interpretation:

if (temp.greaterThan)
fridge.startCooling();

In the resulting fragment both the opening (and the identifier MAX are discarded, giving a total cost
of 2 recoveries. The previous, chunk-based incarnation of our grammar would simply discard the
entire if clause. While not yet ideal, the new version maintains a larger part of the input. Since
it is based on the LAYOUT symbol, it also does not introduce new “water” nodes into the AST. For
reporting errors, the original parse tree, which does contain “water” nodes, can be inspected instead.

The adapted grammar of Figure 9 no longer depends on hand-picking particular symbols at differ-
ent granularities to introduce water recovery rules. Therefore, it is effectively language-independent,
and can be automatically constructed using only the LAYOUT definition of the grammar.

4.3. Insertion Recovery Rules
So far, we have focused our efforts on recovery by deletion of erroneous substrings. However, in
an interactive environment, most parsing errors may well be caused by missing substrings instead.
Consider again our previous example:
if (temp.greaterThan(MAX) // missing)

fridge.startCooling();

Our use case for this has been that the programmer was still editing the phrase, and did not yet add
the missing closing bracket. Discarding the opening (and the MAX identifier allowed us to parse
most of the statement and the surrounding file, reporting an error near the missing bracket. Still, a
better recovery would be to insert the missing).

One way to accommodate for insertion based recovery is by the introduction of a new rule to the
syntax to make the closing bracket optional:
"if" "(" Expr Stm -> Stm {cons("If"), recover}

This strategy, however, is rather specific for a single production, and would significantly increase
the size of the grammar if we applied it to all productions. A better approach would be to insert the
particular literal into the parse stream.

Literal Insertion. SDF allows us to simulate literal insertion using separate productions that vir-
tually insert literal symbols. For example, the lexical syntax section in Figure 10 defines a number
of basic literal-insertion recovery rules, each inserting a closing bracket or other literal that ends a
production pattern. This approach builds on the fact that literals such as ")" are in fact non-terminals
that are defined with a production in Kernel-SDF:
syntax

[\41] -> ")"

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

10 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:11

module Java-15-Permissive-LiteralInsertions
imports Java-15
exports
lexical syntax

-> ")" {cons("INSERT"), recover}
-> "]" {cons("INSERT"), recover}
-> "}" {cons("INSERT"), recover}
-> ">" {cons("INSERT"), recover}
-> ";" {cons("INSERT"), recover}

Fig. 10. Insertion recovery rules for literal symbols.

Thus, the character 41, which corresponds to a closing brace in ASCII, reduces to the nonterminal
“)”. A literal-insertion rule extends the definition of a literal non-terminal, effectively making it
optional by indicating that they may match the empty string. Just as in our previous examples,
{recover} ensures these productions are deferred. The constructor annotation {cons("INSERT")} is
used as a labeling mechanism for error reporting for the inserted literals. As the INSERT constructor
is defined in lexical syntax, it is not used in the resulting AST.

Insertion Rules for Opening Brackets. In addition to insertions of closing brackets in the gram-
mar, we can also add rules to insert opening brackets. These literals start a new scope or context.
This is particularly important for composed languages, where a single starting bracket can indicate
a transition into a different sublanguage, such as the |[and <| brackets of Figure 1 and Figure 2.
Consider for example a syntax error caused by a missing opening bracket in the SQL query of the
former figure:
SQL stm = // missing <|

SELECT password FROM Users WHERE name = ${user}
|>;

Without an insertion rule for the <| opening bracket, the entire SQL fragment could only be recog-
nized as (severely syntactically incorrect) Java code. Thus, it is essential to have insertions for such
brackets:
lexical syntax

-> "<|" {cons("INSERT"), recover}

On Literals, Identifiers, and Reserved Words. Literal-insertion rules can also be used for literals
that are not reserved words. This is an important property when considering composed languages
since, in many cases, some literals in one sublanguage may not be reserved words in another. As an
example, we discuss the insertion rule for the end literal in the combined Stratego-Java language.

In Stratego, the literal end is used as the closing token of the if ... then ... else ... end

construct. To recover from incomplete if-then-else constructs, a good insertion rule is:
lexical syntax

-> "end" {cons("INSERT"), recover}

In Java, the string end is not a reserved word and is a perfectly legal identifier. In Java, identifiers
are defined as follows:5

lexical syntax
[A-Za-z_\$][A-Za-z0-9_\$]* -> ID

This lexical rule would match a string end. Still, the recovery rule will strictly be used to insert the
literal end, and never an identifier with the name “end”. The reason why the parser can make this
distinction is that the literal end itself is defined as an ordinary symbol when normalized to kernel
syntax:
syntax
[\101] [\110] [\100] -> "end"

5In fact this production is a simplified version of the actual production. Java allows many other (Unicode) letters and numbers
to appear in identifiers.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 11

A:12 M. de Jonge et al.

module Java-15-Permissive-LexicalInsertions
imports Java-15
exports
lexical syntax
INSERTSTARTQ StringPart* "\n" -> StringLiteral {cons("INSERTEND")}
"\"" -> INSERTSTARTQ {recover}
INSERTSTARTC CommentPart* EOF -> Comment {cons("INSERTEND")}
"/*" -> INSERTSTARTC {recover}

Fig. 11. Insertion recovery rules for lexical symbols.

The reason that SDF allows this production to be defined in this fashion is that in the SGLR algo-
rithm, the parser only operates on characters, and the end literal has no special meaning other than
a grouping of character matches.

The literal-insertion recovery rule simply adds an additional derivation for the "end" symbol,
providing the parser with an additional way to parse it, namely by matching the empty string. As
such, the rule does not change how identifiers (ID) are parsed, namely by matching the pattern at the
left hand side of the production rule for the ID symbol. With a naive recovery strategy that inserts
tokens into the stream, identifiers (e.g., end in Java) could be inserted in place of keywords. With
our approach, these effects are avoided since the insertion recovery rules only apply when a literal
is expected.

Insertion Rules for String and Comment Closings. Figure 11 specifies recover rules for terminat-
ing the productions of the StringLiteral and Comment symbols, first seen in Figure 6. Both rules
have a {recover} annotation on their starting literal. Alternatively, the annotation could be placed
on the complete production:
lexical syntax

"\"" StringPart* "\n" -> StringLiteral {cons("INSERTEND"), recover}

However, the given formulation is beneficial for the runtime behavior of our adapted parser im-
plementation, ensuring that the annotation is considered before construction of the starting literal.
The recovery rules for string literals and comments match either at the end of a line, or at the end
of the file as appropriate, depending on whether newline characters are allowed in the original,
non-recovering productions. An alternative approach would have been to add a literal insertion pro-
duction for the quote and comment terminator literals. However, by only allowing the strings and
comments to be terminated at the ending of lines and the end of file, the number of different possible
interpretations is severely reduced, thus reducing the overall runtime complexity of the recovery.

Insertion Rules for Lexical Symbols. Insertion rules can also be used to insert lexical symbols
such as identifiers. However, lexical symbols do have a representation in the AST, therefore, their
insertion requires the introduction of placeholder nodes that represent a missing code construct, for
example a NULL() node. Since placeholder nodes alter the abstract syntax of the grammar, their in-
troduction adds to the complexity of tools that process the AST. However, for certain use cases such
as content completion in an IDE, lexical insertion can be useful. We revisit the topic in Section 8.

4.4. Combining Different Recovery Rules
The water recovery rules of Section 4.2 and the insertion rules of Section 4.3 can be combined to
form a unified recovery mechanism that allows both discarding and insertion of substrings:
module Java-15-Permissive
imports

Java-15-Permissive-Water
Java-15-Permissive-LiteralInsertions
Java-15-Permissive-LexicalInsertions

Together, the two strategies maintain a fine balance between discarding and inserting substrings.
Since the water recovery rules incur additional cost for each water substring, insertion of literals will

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

12 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:13

generally be preferred over discarding multiple substrings. This ensures that most of the original (or
intended) user input is preserved.

4.5. Automatic Derivation of Permissive Grammars
Automatically deriving recovery rules helps to maintain a valid, up-to-date recovery rule set as
languages evolve and are extended or embedded into other languages. Particularly, as languages
are changed, all recovery rules that are no longer applicable are automatically removed from the
grammar and new recovery rules are added. Thus, automatic derivation helps to maintain language
independence by providing a generic, automated approach towards the introduction of recovery
rules.

SDF specifications are fully declarative, which allows automated analysis and transformation of
a grammar specification. We formulate a set of heuristic rules for the generation of recovery rules
based on different production patterns. These rules are applied in a top-down traversal to transform
the original grammar into a permissive grammar. The heuristics in this section focus on insertion
recovery rules, since these are language specific. The water recovery rules are general applicable
and added to the transformed grammar without further analysis. The heuristics discussed in this
section are based on our experience with different grammars.

So far, we only focused on a particular kind of literals for insertion into the grammar, such as
brackets, keywords, and string literals. Still, we need not restrict ourselves to only these particu-
lar literals. In principle, any literal in the grammar is eligible for use in an insertion recovery rule.
However, for many literals, automatic insertion can lead to unintuitive results in the feedback pre-
sented to the user. For example, in the Java language “synchronized” is an optional modifier at the
beginning of a class declaration. We don’t want the editor to suggest to insert a “synchronized” key-
word. In those cases, discarding some substrings instead may be a safer alternative. The decision
whether to consider particular keywords for insertion may depend on their semantic meaning and
importance [Degano and Priami 1995]. To take this into account, expert feedback on a grammar is
needed.

Since we have aimed at maintaining language independence of the approach, our main focus is on
more generic, structure-based properties of the grammar. We have identified four different general
classes of literals that commonly occur in grammars:

— Closing brackets and terminating literals for context-free productions.
— Opening brackets and starting literals for context-free productions.
— Closing literals that terminate lexical productions where no newlines are allowed (such as most

string literals).
— Closing literals that terminate lexical productions where newlines are allowed (such as block com-

ments).

Each has its own particular kind of insertion rule, and each follows its own particular definition
pattern. We base our generic, language independent recovery technique on these four categories.

By grammar analysis, we derive recovery rules for insertions of the categories mentioned above.
With respect to the first and second category, we only derive rules for opening and closing terminals
that appear in a balanced fashion with another literal (or a number of other literals). Insertions of
literals that are not balanced with another literal can lead to undesired results, since such constructs
do not form a clear nesting structure. Furthermore, we exclude lexical productions that define strings
and comments, for which we only derive more restrictive insertion rules given by the third and fourth
category.

Insertion rules for the first category, closing bracket and terminating literal insertions, are added
based on the following criteria. First, we only consider context-free productions. Second, the first
and last symbols of the pattern of such a production must be a literal, e.g., the closing literal appears
in a balanced fashion. Finally, the last literal is not used as the starting literal of any other production.
The main characteristic of the second category is that it is based on starting literals in context-free
productions. We only consider a literal a starting literal if it only ever appears as the first part of a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 13

A:14 M. de Jonge et al.

module Java-15
...
context-free syntax
"{" BlockStm* "}" -> Block {cons("Block")}
"(" Expr ")" -> Expr {bracket}
"while" "(" Expr ")" Stm -> Stm {cons("While")}
...
"void" "." "class" -> ClassLiteral {cons("Void")}
(Anno | ClassMod)* "class" Id ... -> ClassHead {cons("ClassHead")}

Fig. 12. A selection of context-free productions that appear in the Java grammar.

production pattern in all rules of the grammar. For the third category, we only consider productions
with identical starting and end literals where no newlines are allowed in between. Finally, for the
fourth category we derive rules for matching starting and ending literals in LAYOUT productions.
Note that we found that some grammars (notably the Java grammar of [Bravenboer et al. 2006]) use
kernel syntax for LAYOUT productions to more precisely control how comments are parsed. Thus, we
consider both lexical and kernel syntax for the comment-terminating rules.

As an example, consider the context-free productions of Figure 12. Looking at the first pro-
duction, and using the heuristic rules above, we can recognize that } qualifies as a closing literal.
Likewise,) satisfies the conditions for closing literals we have set. By programmatically analyzing
the grammar in this fashion, we collected the closing literal insertion rules of Figure 10 which are
a subset of the complete set of closing literal insertion rules for Java. From the productions of Fig-
ure 12 we can further derive the { and (opening literals. In particular, the while keyword is not
considered for deriving an opening literal insertion rule, since it is not used in conjunction with a
closing literal in its defining production.

No set of heuristic rules is perfect. For any kind of heuristic, an example can be constructed
where it fails. We have encountered a number of anomalies that arose from our heuristic rules. For
example, based on our heuristic rules, the Java class keyword is recognized as a closing literal6,
which follows from the “void” class literal production of Figure 12, and from the fact that the class

keyword is never used as a starting literal of any production. In practice, we have found that these
anomalies are relatively rare and in most cases harmless.

We evaluated our set of heuristic rules using the Java, Java-SQL, Stratego, Stratego-Java and
WebDSL grammars, as outlined in Section 10. For these grammars, a total number of respectively
19 (Java), 43 (Java-SQL), 37 (Stratego), 47 (Stratego-Java) and 32 (WebDSL) insertion rules were
generated, along with a constant number of water recovery rules as outlined in Figure 9. The com-
plete set of derived rules is available from [Kats et al. 2011].

4.6. Customization of Permissive Grammars
Using automatically derived rules may not always lead to the best possible recovery for a particular
language. Different language constructs have different semantic meanings and importance. Differ-
ent languages also may have different points where programmers often make mistakes. Therefore
a good error recovery mechanism is not only language independent, but is also flexible [Degano
and Priami 1995]. That is, it allows grammar engineers to use their experience with a language to
improve recovery capabilities. Our system, while remaining within the realm of the standard SDF
grammar specification formalism, delivers both of these properties.

Language engineers can add their own recovery rules using SDF productions similar to those
shown earlier in this section. For example, a common “rookie” mistake in Stratego-Java is to use
[| brackets |] instead of |[brackets]|. This may be recovered from by standard deletion and
insertion rules. However, the cost of such a recovery is rather high, since it would involve two dele-
tions and two insertions. Other alternatives, less close to the original intention of the programmer,
might be preferred by the recovery mechanism. Based on this observation, a grammar engineer can
add substitution recovery rules to the grammar:

6Note that for narrative reasons, we did not include an insertion rule for this keyword in Figure 10.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

14 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:15

i = f (x) + 1 ;
i = f (x + 1);
i = f (x) ;
i = f (1);
i = (x) + 1 ;
i = (x + 1);
i = x + 1 ;
i = f ;
i = (x) ;
i = x ;
i = 1 ;

f (x + 1);
f (x) ;
f (1);

;

Fig. 13. Interpretations of i=f(x)+1; with insertion recovery rules (underlined) and water recovery rules.

lexical syntax
"[|" -> "|[" {recover, cons("INSERT")}
"|]" -> "]|" {recover, cons("INSERT")}

These rules substitute any occurrence of badly constructed embedding brackets with the correct al-
ternative, at the cost of only a single recovery. Similarly, grammar engineers may add recovery rules
for specific keywords, operators, or even placeholder identifiers as they see fit to further improve
the result of the recovery strategy.

Besides composition, SDF also provides a mechanism for subtraction of languages. The {reject}
disambiguation annotation filters all derivations for a particular set of symbols [van den Brand et al.
2002]. Using this filter, it is possible to disable some of the automatically derived recovery rules.
Consider for example the insertion rule for the class keyword, which arose as an anomaly from
the heuristic rules of the previous subsection. Rather than directly removing it from the generated
grammar, we can disable it by extending the grammar with a new rule that disables the class

insertion rule.
lexical syntax

-> "class" {reject}

It is good practice to separate the generated recovery rules from the customized recovery rules.
This way, the generated grammar does not have to be adapted and maintained by hand. A separate
grammar module can import the generated definitions, while adding new, handwritten definitions.
SDF allows modular composition of grammar definitions.

5. PARSING PERMISSIVE GRAMMARS WITH BACKTRACKING
When all recovery rules are taken into account, permissive grammars provide many different in-
terpretations of the same code fragment. As an example, Figure 13 shows many possible interpre-
tations of the string i=f(x)+1;. The alternative interpretations are obtained by applying recovery
productions for inserting parentheses or removing text parts. This small code fragment illustrates
the explosion in the number of ambiguous interpretations when using a permissive grammar. The
option of inserting opening brackets results in even more possible interpretations, since bracket pairs
can be added around each expression that occurs in the program text.

Conceptually, the use of grammar productions to specify how to recover from errors provides
an attractive mechanism to parse erroneous fragments. All possible interpretations of the fragment
are explored in parallel, using a generalized parser. Any alternative that does not lead to a valid
interpretation is simply discarded, while the remaining branches are filtered by disambiguation rules
applied by a post processor on the created parse forest. However, from a practical point of view, the
extra interpretations created by recovery productions negatively affect time and space requirements.
With a generalized parser, all interpretations are explored in parallel, which significantly increases
the workload for the parser, even if there are no errors to recover from.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 15

A:16 M. de Jonge et al.

void methodX() {
if (true)

foo();
}
int i = 0;
while (i < 8)

i=bar(i);
}

Fig. 14. The superfluous closing bracket is detected at the while keyword.

In this section we address the performance problems introduced by the multiple recover interpre-
tations. We extend the SGLR algorithm with a selective form of backtracking that is only applied
when actually encountering a parsing error. The performance problems during normal parsing are
simply avoided by ignoring the recover productions.

5.1. Backtracking
As it is not practical to consider all recovery interpretations in parallel with the normal grammar
productions, we need a different strategy to efficiently parse with permissive grammars. As an al-
ternative to parsing different interpretations in parallel, backtracking parsers revisit points of the
file that allow multiple interpretations (the choice points). Backtrack parsing is not a correct imple-
mentation of generalized parsing, since a backtracking parser only produces a single possible parse.
However, when applied to error recovery, this is not problematic. For typical cases, parsing only a
single interpretation at a time suffices; ultimately, only one recovery solution is needed.

To minimize the overhead of recovery rules, we introduce a selective form of backtracking to
(S)GLR parsing that is only used for the concern of error recovery. We ignore all recovery pro-
ductions during normal parsing, and employ backtracking to apply the recovery rules only once an
error is detected. Backtracking parsers exhibit exponential behavior in the worst case [Johnstone
et al. 2004]. For pathological cases with repetitive backtracking, the parser is aborted, and a sec-
ondary, non-correcting, recovery technique is applied.

5.2. Selecting Choice Points for Backtracking
A parser that supports error recovery typically operates by consuming tokens (or characters) un-
til an erroneous token is detected. At the point of detection of an error, the recovery mechanism
is activated. A major problem for error recovery techniques is the difference between the actual
location of the error and the point of detection [Degano and Priami 1995]. Consider for example
the erroneous code fragment in Figure 14. The superfluous closing bracket (underlined) after the
foo(); statement is obviously intended as a closing bracket for the if construct. However, since the
if construct misses an opening bracket, the closing bracket is misinterpreted as closing the method
instead of the if construct. At that point, the parser simply continues, interpreting the remaining
statements as class-body declarations. Consequently, the parser fails at the reserved while keyword,
which can only occur inside a method body. More precisely, with a scannerless parser, it fails at the
unexpected space after the characters w-h-i-l-e; the character cannot be shifted and all branches
(interpretations at that point) are discarded.

In order to properly recover from a parse failure, the text that precedes the point of failure must
be reinterpreted using a correcting recovery technique. Using backtracking, this text is inspected in
reverse order, starting at the point of detection, gradually moving backwards to the start of the input
file. Using a reverse order helps maintain efficiency, since the actual error is most likely near the
failure location.

As generalized LR parsers process different interpretations in parallel, they use a more compli-
cated stack structure than regular LR parsers. Instead of a single, linear stack, they use a graph-
structured stack (GSS) that efficiently stores the different interpretation branches, which are dis-
carded as input tokens or characters are shifted [Tomita 1988]. All discarded branches must be
restored in case the old state is revisited, which poses a challenge for applying backtracking.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

16 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:17

Fig. 15. Applying error recovery rules with backtracking. The initial point of failure and the start of the recovery search
space is indicated by a triangle. The entire search space is indicated using dashed lines, where the numbers to the side indicate
the number of recovery rules that can be applied at that line.

To make it possible to resume parsing from a previous location, the complete stack structure for
that location is stored in a choice point. We found that it is prohibitive (in terms of performance) to
maintain the complete stack state for each shifted character. To minimize the overhead introduced,
we only selectively record the stack structure. Lines have meaning in the structure of programs as
units of editing. Typically, parse errors are clustered in the line being edited. We base our heuristic
for storing choice points on this intuition. In the current implementation, we create one backtracking
choice point for each line of the input file.

5.3. Applying Recovery Rules
A parse failure indicates that one or more syntax errors reside in the prefix of the program before
the failure location. Since it is unlikely that the parser can consume many more tokens after a
syntax error, these errors are typically located near the failure location. To recover from multiple
errors, multiple corrections are sometimes required. To recover from syntax errors efficiently, we
implement a heuristic that expands the search space with respect to the area that is covered and with
respect to the number of corrections (recover rule applications) that are made.

Figure 15 illustrates how the search heuristic is applied to recover the Java fragment of Figure 14.
The algorithm iteratively explores the input stream in reverse order, starting at the nearest choice
point. With each iteration of the algorithm, different candidate recoveries are explored in parallel
for a restricted area of the file and for a restricted number of recovery rule applications. For each
following iteration the size of the area and the number of recovery rule applications are increased.

Figure 15a shows the parse failure after the while keyword. The point of failure is indicated
by the triangle. The actual error, at the closing bracket after the if statement, is underlined. The
figure shows the different choice points that have been stored during parsing using circles in the left
margin.

The first iteration of the algorithm (Figure 15b) focuses on the line where the parser failed. The
parser is reset to the choice point at the start of the line, and enters recovery mode. At this point, only
candidate recoveries that use one recovery production are considered; alternative interpretations
formed by a second recovery production are cut off. Their exploration is postponed until the next
iteration. In this example scenario, the first iteration does not lead to a valid solution.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 17

A:18 M. de Jonge et al.

For the next iteration, in Figure 15c, the search space is expanded with respect to the size of the
inspected area and the number of applied recovery rules. The new search space consists of the line
that precedes the point of detection, plus the error detection line where the recovery candidates with
two changes are considered, resuming the interpretations that were previously cut off.

In Figure 15d, the search space is again expanded with the preceding line. This time, a valid
recovery is found: the application of a water recovery rule that discards the closing bracket leads
to a valid interpretation of the erroneous code fragment. Once the original line where the error was
detected can be successfully parsed, normal parsing continues.

5.4. Algorithm
The implementation of the recovery algorithm requires a number of (relatively minor) modifications
of the SGLR algorithm used for normal parsing. First, productions marked with the {recover} at-
tribute are ignored during normal parsing. Second, a choice point is stored at each newline character.
And finally, if all branches are discarded and no accepting state is reached, the Recover function is
called. Once the recovery is successful, normal parsing resumes with the newly constructed stack
structure.

Figure 16 shows the recovery algorithm in pseudo code. The Recover function controls the it-
erative search process described in Section 5.3. The function starts with some initial configuration
(line 2–3), initializing the candidates variable, and selecting the last inserted choice point. The
choice points are then visited in reverse order (line 4–7), until a valid interpretation (non-empty
stack structure) is found (line 7).

For each choice point that is visited, the ParseCandidates function is called. The
ParseCandidates function has a twofold purpose (line 16, 17): first, it tries to construct a valid
interpretation (line 16) by exploring candidate recover branches; second, it collects new candidate
recover branches (line 17) the exploration of which is postponed until the next iteration. Candidate
recover branches are cut off recover interpretations of a prefix of the program. The ParseCandidates
function reparses the fragment that starts at the choice point location and ends at the accept location
(line 19–26). We heuristically set the ACCEPT INTERVAL on two more lines and at least twenty more
characters being parsed after the failure location. For each character of this fragment, previously cut
off candidates are merged into the stack structure (line 23) so that they are included in the parsing
(line 24); while new candidates are collected by applying recover productions on the stack structure
(line 24–25, line 31).

The main idea, implemented in line 23-25 and the ParseCharacter function (line 28–32), is to
postpone the exploration of branches that require multiple recover productions, thereby implement-
ing the expanding search space heuristic described in Section 5.3.

After the algorithm completes and finds a non-empty set of stacks for the parser, it enters an op-
tional disambiguation stage. In case more than one valid recovery is found, stacks with the lowest
recovery costs are preferred. These costs are calculated as the sum of the cost of all recovery rules
applied to construct the stack. We employ a heuristic that weighs the application of a water recovery
rule as twice the cost of the application of an insertion recovery rule, which accounts for the intu-
ition that it is more common that a program fragment is incomplete during editing than that a text
fragment was not intended and therefore should be deleted. Ambiguities obtained by application of
a recovery rule annotated with {reject} form a special case. The reject ambiguity filter removes
the stack created by the corresponding rule from the GSS, thereby effectively disabling the rule.

6. LAYOUT-SENSITIVE RECOVERY OF SCOPING STRUCTURES
In this section, we describe a recovery technique specific for errors in scoping structures. Scoping
structures are usually recursive structures specified in a nested fashion [Charles 1991]. Omitting
brackets of scopes, or other character sequences marking scopes, is a common error made by pro-
grammers. These errors can be addressed by common parse error recovery techniques that insert
missing brackets.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

18 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:19

RECOVER(choicePoints, failureOffset)

1 � Constructs a recovery stack structure (GSS) for the parse input after the failure location
2 candidates ← {}
3 choicePoint ← Last inserted choicepoint
4 do
5 (stacks, candidates)← PARSECANDIDATES(candidates, choicePoint , failureOffset)
6 choicePoint ← Preceding choicepoint (or choicePoint if none)
7 until | stacks | > 0
8 return stacks

PARSECANDIDATES(candidates, choicePoint , failureOffset)

9 � Parses in parallel previously collected candidate recover branches,
10 while cutting off and collecting new recover candidates
11 � Input:
12 candidates - Unexplored recover branches that were created in previous loop
13 choicePoint - The start configuration for the parser
14 failureOffset - Location were the parser originally failed
15 � Output:
16 stacks - recovered stacks at the accept location
17 newCandidates - new unexplored recover branches for the parsed fragment
18
19 stacks ← choicePoint .stacks
20 offset ← choicePoint .offset
21 newCandidates ← {}
22 do
23 stacks ← stacks ∪ { c | c ∈ candidates ∧ c.offset = offset}
24 (stacks, recoverStacks)← PARSECHARACTER(stacks, offset , true)
25 newCandidates ← newCandidatess ∪ recoverStacks
26 offset = offset +1
27 until offset = (failureOffset +ACCEPT INTERVAL)
28 return (stacks,newCandidates)

PARSECHARACTER(stacks, offset , inRecoverMode)

29 � Parses the input character at the given offset.
30 � Output:
31 parseStacks - stacks created by applying the normal grammar productions
32 recoverStacks - stacks created by applying recover productions (in recover mode)
33 return (parseStacks, recoverStacks)

Fig. 16. A backtracking algorithm to apply recovery rules.

However, as scopes can be nested, there are often many possible positions where a
missing bracket can be inserted. The challenge is to select the most appropriate position.

class C {
void m() {
int y;

int x;
}

Fig. 17. Missing }.

As an example, consider the Java fragment in Figure 17. This fragment
could be recovered by inserting a closing bracket at the end of the line
with the second opening bracket, or at any line after this line. However, the
use of indentation suggests the best choice may be just before the int x;

declaration.
One approach to handle this problem is to take secondary notation like

indentation into account during error recovery. Bridge parsing, introduced by Nilsson-Nyman

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 19

A:20 M. de Jonge et al.

"class C " "{" IND "void m() " "{" IND "int y;" IND "int x;" IND "}"

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

Fig. 18. A tokenization of the example program in Figure 17 where text is mapped to islands (double edges), water (W),
and reefs (R(n)). The number n in a reef R(n) represents the indentation level of the reef.

et al. [2009]7, uses this particular approach. This scope recovery approach can be combined with
the permissive grammar approach presented in the previous section.

6.1. Bridge Parsing
Bridge parsing provides a technique specifically targeted at improved recovery of scope errors using
secondary notation such as indentation. The technique as such is independent of any specific parsing
formalism. It may be used as a standalone processor of erroneous files where recovery otherwise
fails: given an erroneous file, or section of a file, the bridge parser analyses the content and provides
suggestions on where to insert missing brackets. Based on a set of rules that describe the typical
relation between scopes and layout for Java, a bridge parser can correctly recover cases such as the
example above.

Internally, a bridge parser contains three parts: a tokenizer, a model builder, and a repairer. The
tokenizer provides a list of interesting tokens from an input text. Tokens starting and ending scopes
are referred to as islands; tokens interesting for construction of scopes, or recovery of scopes, are
referred to as reefs; and remaining tokens are considered to be water. The terms island and water
are used in the same fashion as in island grammars [van Deursen and Kuipers 1999; Moonen 2001;
2002]. Reefs, added for bridge parsing, are tokenwise like islands, but have a different role in the
model constructed from the token list. Figure 18 shows an example of a token list for the program
fragment in Figure 17. Each part of the fragment is mapped to either an island, reef, or water. For
the benefit of the model builder algorithm, the token list is padded with some additional tokens at
the start and end.

After tokenization, the model builder constructs scopes based on information in the token list.
For instance, each reef in the token list in Figure 18 has a number indicating indentation level.8 This
indentation information is key to construction of scopes, represented as bridges, connecting two is-
lands, in the model. The model builder decides which two islands to connect using an algorithm that
considers patterns of tokens surrounding islands, and rules for when patterns match. For instance,
in Figure 19 bridges have been added to the token list in Figure 18. The added bridges connect
the start and end of the fragment, and two of the islands, while one island remains unmatched. In
this example, islands are matched based on the indentation of the first reef to their left. For the two
matched islands their corresponding reef shares the same indentation, while their is no such match
for the island without a bridge. Islands like this one, without a bridge, are considered broken and
representatives of broken scopes.

After construction of bridges, the repairer takes over. The purpose of the repairer is to recover
broken scopes based on as set of patterns and rules. The purpose of the patterns is to identify appro-
priate so called construction sites for a recovery. Once such a construction site has been found, the
rules are used to decide how to insert a matching so called artificial island and create a bridge. For
instance, in Figure 19 a construction site is found based on a pattern identifying indentation shifts,
and an artificial islands is inserted to match the broken island and recover the scope error. Insertion
of islands, like in this example, correspond to the recovery suggestions a bridge parser provides
after it is done.

7Emma Nilsson-Nyman, the first author of the cited bridge parser paper, has changed her name to Emma Söderberg and is
one of the authors of this paper.
8Note that in our implementation, we determine the indentation level by counting the number of spaces, treating tabs as a
fixed number of spaces. The relation between tabs and spaces could also be determined from the editor settings.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

20 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:21

SOF R(0) W { R(1) W { R(2) W R(1) W R(0) } EOF

broken
}

recovery

Fig. 19. A bridge parser model with bridges (arches) between matching islands (double edged nodes). Islands missing
a bridge correspond to broken scopes (broken). The bridge repairer will try to recover such scopes by insertion of new
matching islands (recovery).

A more complete description of the algorithm, incrementally constructing multiple bridges, is
given by Nilsson-Nyman et al. [2009].

6.2. Combining Permissive Grammars and Bridge Parsing
As a recovery technique, bridge parsing forms a supplementary approach that can be used together
with permissive grammars introduced in Section 4. Permissive grammars and bridge parsing share
their inspiration from island grammars [van Deursen and Kuipers 1999; Moonen 2001; 2002], with
the difference that a bridge parser employs a scanner.

The use of a scanner in bridge parsing may appear contrary to the scannerless nature of SGLR.
One could imagine that a scannerless version of a bridge parser would be better suited for an inte-
gration to SGLR. That is, based on an accurate (scannerless) lexical analysis, additional reefs could
be identified using the keywords of a language. However, previous results showed that doing so only
marginally improves recovery quality [de Jonge et al. 2009]. Also, practical experience has shown
that a bridge parser is most time and memory-efficient when independent from a specific grammar,
focusing just on the scoping structures of the language. For this reason and for simplicity, the bridge
parsers used in this paper only include scope tokens and layout reefs.

This combined approach has limitations with regard to embedded languages, where a token may
have different syntactic meanings: { might be a scope delimiter in one language and an operator in
another. Still, the layout-sensitive bridge model gives an approximation of the scoping structure in
those cases, which can improve recovery results when used in combination with recovery rules. As
a layout-sensitive technique, bridge parsing served as an inspiration to the layout-sensitive regions
discussed in the next section.

7. LAYOUT-SENSITIVE REGION SELECTION
In this section we describe a layout-sensitive region recovery algorithm that improves recovery effi-
ciency and helps cope with pathological cases not easily addressed with only permissive grammars,
backtracking, and bridge parsing. Relying on the increasing search space of permissive grammars
and backtracking, it is not always feasible to provide good recovery suggestions in an acceptable
time span. Problems can arise when the distance between the error location and the detection loca-
tion is exceptionally large, or when the recovery requires many combined recovery rule applications.
The latter can occur when multiple errors are tightly clustered, or when no suitable recovery rule is
at hand for a particular error. In general, a valid parse can be found after expanding the search space,
but at a risk of a high performance cost, and potentially resulting in a complex network of recovery
suggestions that do not lead to useful feedback for programmers. Section 4.3 discusses an example
in which an entire SQL fragment would be parsed as (severely incorrect) Java code.

To address these concerns, this section introduces an approach to identify the region in which
the actual error is situated. By constraining the recovery suggestions to a particular part of the file,
region selection improves the efficiency as well as the quality of the recovery, avoiding suggestions
that are spread out all over the file.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 21

A:22 M. de Jonge et al.

class X {
int i;

void method() {
i = 1;
if (true) {

foo();
bar();

}
return;

}
}

Fig. 20. Indentation closely resembles the hierarchical structure of a program.

Fig. 21. Parent child relations between lines with consistent layout (left) and inconsistent layout (mid, right).
if(true){ is the parent line of the siblings foo(); and bar(); (left, mid, right), and the inconsistently indented }
(right).

In some cases it is better to ignore a small part of the input file, rather than to try and fix it
using a combination of insertions and discarded substrings. As a second application of the regional
approach, region skipping is used as a fallback recovery strategy that discards the erroneous region
entirely in case a detailed analysis of the region does not lead to a satisfactory recovery.

7.1. Nested Structures as Regions
Language constructs such as statements and methods are elements of list structures. List elements
form free standing blocks, in the sense that they can be omitted without influencing the syntactic
interpretation of other blocks. It follows that erroneous free standing blocks can simply be skipped,
providing a coarse recovery that allows the parser to continue. We conclude that list elements are
suitable regions for regional error recovery.

The bridge parsing technique discussed in Section 6 exploits layout characteristics to detect the
intended nesting structure of a program. In this section, we present a region selection technique that,
inspired by bridge parsing, uses indentation to detect erroneous structures. Indentation typically
follows the logical nesting structure of a program, as illustrated in Figure 20. The relation between
constructs can be deduced from the layout. An indentation shift to the right indicates a parent-child
relation, whereas the same indentation indicates a sibling relation. The region selection technique
inspects the parent and sibling structures near the parse failure location to detect the erroneous
region.

Indentation usage is not enforced by the language definition. Proper use of layout is a conven-
tion, being part of good coding practice. We generally assume that most programmers apply layout
conventions, which is reinforced by the application of automatic formatters. Furthermore we as-
sume that indentation follows the logical nesting structure. However, we should keep in mind the
possibility of inconsistent indentation usage which decreases the quality of the results. The second
assumption we make is that programs contain free standing blocks, i.e. that skipping a region still
yields a valid program. Most programming languages seem to meet this assumption. If both as-
sumptions are met, layout-sensitive region selection can improve the quality and performance of a
correcting technique, and offer a fallback recovery technique in case the correcting technique fails.

7.2. Regions based on Indentation
We view the source text as a tree-structured collection of lines, whereby the parent-child relation
between lines are determined by indentation shifts. Thus, given a line l, line p is the parent of l if and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

22 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:23

Fig. 22. Multi-line Java constructs with various indentation patterns. The solid bars indicate layout regions that correspond
to code regions, the hatched bars indicate layout regions that are in fact unwished artifacts.

only if l is strictly more indented than p, and line l succeeds line p, and no lines exist between l and
p that have less indentation than l. Lines with the same parent are siblings of each other. Figure 21
illustrates the parent-child relation for some small code fragments. The line if(true){ in the left
fragment is the parent of the sibling lines foo(); and bar();. The mid and right fragment illustrate
how the parent-child relation applies in case of inconsistent indentation; by definition, child nodes
are more indented than their parent, however, the siblings in these fragments do not all have the
same indent value.

A parent-child relation between two lines is a strong indication that the code constructs associ-
ated to these lines are also in parent-child relation. Similarly, a sibling relation between two lines
indicates that either their associated code constructs are siblings as well, or that both lines belong to
the same multi-line construct. Figure 22 provides some examples of multi-line constructs with vari-
ous indentation patterns. For all constructs in the figure it holds that a parent-child relation between
two lines reflects a parent-child relation between the code constructs associated to these lines. The
shown constructs are different with respect to the number of siblings (of the first line) that are part of
the construct. Another type of multi-line constructs are constructs that wrap over to the subsequent,
more indented line. In that case, a parent child relation exists between two lines that actually belong
to the same construct. This is an example of a small inconsistency that is not harmful to the overall
approach.

We decompose a code fragment into candidate regions, based on the assumption that parent-child
relations between lines reflect parent-child relations between the associated constructs, e.g., if a line
is contained in a region then its child lines are also contained in that region. Unfortunately, indenta-
tion alone does not provide sufficient information to demarcate regions exactly. The main limitation
is the ambiguous interpretation of sibling lines, which, by assumption, either belong to the same
code construct or to separate constructs that are siblings. Given a single line, we construct multiple
indentation-based regions: the smallest region consist of the line plus its child lines, the alternate
regions are obtained by subsequently including sibling lines, including their children. The bars in
Figure 22 show the different regions that are constructed for the first line of the given fragments.
Only the regions corresponding to the solid bars represent actual code constructs or (sub)lists of
code constructs. The other bars are unwanted artifacts that, based on indentation alone, can not be
distinguished from real regions. Notice that most of these ambiguities could be solved by using lan-
guage specific information, for example about the use of curly braces in Java; lines that start with
a curly brace are most likely to be part of the region being constructed. However, we implemented
the algorithm in a language independent way.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 23

A:24 M. de Jonge et al.

Fig. 23. A candidate region is validated and successfully discarded.

(a) A candidate region is rejected.

(b) An alternative candidate region is validated and successfully discarded.

Fig. 24. Iterative search for a valid region.

7.3. Region Selection
We follow an iterative process to select an appropriate region that encloses a syntax error. In each
iteration, a different candidate region is considered. This candidate is then validated and either
accepted as erroneous or rejected; in case of a rejected candidate, another candidate is considered.

The selection of candidate regions faces two challenges: First, the start line of the erroneous
code construct is not known, second, multiple unsuitable regions are constructed because of the
ambiguous interpretation of sibling lines. We adopt a pragmatic approach, subsequently selecting
candidate regions for a different start line location with a different number of sibling lines. We start
with validating small regions near the failure location, then we continue with validating regions of
increased size as well as regions that are located further away from the failure location. More details
are provided in Section 7.4 that describes the region selection algorithm.

A region is validated as erroneous in case discarding of that region solves the syntax error,
e.g., parsing continues after the original failure location. We show example scenarios in Figure 23
and Figure 24. Figure 23 shows a syntax error and the point of detection, indicated by a triangle
(left). A candidate region is selected based on the alignment of the void keyword and the closing
bracket (middle figure), and validated by discarding the region. Since the parsing of the remainder
of the fragment is successful (right), the region is accepted as erroneous. Figure 24(a) shows an
example where a candidate region is rejected. Based on the point of detection, an obvious candi-
date region is the m2 method (middle), which is discarded (right). However, the attempt to parse the
succeeding construct leads to a premature parse failure (right), therefore the region is rejected. In
Figure 24(b) an alternative candidate region is selected. This region is validated as erroneous.

The region validation criterion should balance the risk of evaluating a syntactically correct can-
didate region as erroneous, and the risk of evaluating an erroneous candidate region as syntactically
correct. Both cases lead to large regions and/or spurious syntax errors, which should be avoided.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

24 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:25

SELECTERRONEOUSREGION(failureLine)

1 � Input: Line where the parse failure occurs (or a parent of this line)
2 � Output: Region that contains the error
3
4 � MAX SIBLINES COUNT : Max number of sibling lines in the candidate regions
5 � MAX BW INDEX : Max number of sibling lines that are backtracked
6 for sibCount in 0 to MAX SIBLINES COUNT
7 for bwSibIndex in 0 to MAX BW INDEX
8 startLine ← GETPRECEDINGSIBLINE(failureLine, bwSibIndex)
9 sibLine ← GETFOLLOWINGSIBLINE(startLine, sibCount)

10 endLine ← GETLASTDESCENDANTLINE(sibLine)
11 if startLine , endLine exist and TRYSKIPREGION(startLine, endLine) then
12 return (startLine, endLine)� erroneous region
13 end
14 end
15 end
16 return SELECTERRONEOUSREGION(GETPARENTLINE(failureLine))

TRYSKIPREGION(startline, endline)

17 � Output: true iff discarding the region startline . . . endline
lets parsing continue after the failure location

GETPRECEDINGSIBLINE(line, bwCount)

18 � Output: Sibling line that preceeds line by bwCount siblings

GETFOLLOWINGSIBLINE(line, fwCount)

19 � Output: Sibling line that succeeds line by fwCount siblings

GETLASTDESCENDANTLINE(line)

20 � Output: Last descendant line of line , or line if no descendants exist

GETPARENTLINE(line)

21 � Output: Parent line of line

Fig. 25. Algorithm to select a discardable region that contains the syntax error.

The underlying problem are multiple errors; it is not possible to distinguish a secondary parse fail-
ure from a genuine syntax error that happens to be close-by. We address the issue of multiple syntax
errors by implementing a heuristic accept criterion. The criterion considers a candidate region as er-
roneous if discarding results in two more lines of code parsed correctly. The criterion is established
after some experimentation and has shown good practical results.

7.4. Algorithm
Figure 25 shows the region selection algorithm in pseudo-code. The function

SelectErroneousRegion takes as input the failure line and returns as output the erroneous
region described by its start line and end line. The nested for loops (line 6,7) implement the
iterative search process described in Section 7.3. The iteration starts with the smallest region
(line 6, sibCount=0) that can be constructed for the failure line (line 7, bwSibIndex=0). In the
first iteration (line 7), regions are selected at increasing distance from the failure location. The
second iteration (line 6) increases the size of the selected regions. The iteration stops in case a
selected region is validated as erroneous (lines 11-13). If no erroneous region is found, the search

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 25

A:26 M. de Jonge et al.

Fig. 26. Candidate regions subsequently tested for the indented code fragment at the left. Candidate regions are selected
by backtracking (bwSibIndex) and by extending the number of sibling lines that are contained in the region (sibCount).
Finally, the parent line is visited in the recursion step.

process continues by recursively visiting the parent of the failure line (line 16). For performance
reasons, we restrict the maximum size of the visited regions (line 4) and the maximum number of
backtracked lines (line 5). Good practical results were obtained with a maximum size of 5 sibling
lines and 5 backtracking steps.

Figure 26 illustrates the region selection procedure applied to a small code fragment with a parse
failure at the marked line. The vertical bars represent the regions that are subsequently visited by
increasing the backtracking distance (bwSibIndex) and the region size (sibCount). The right most
bar represents the parent region visited in the recursion step.

7.5. Practical Considerations

Separators and Operators. Region selection works for struc-
tures that form free standing blocks in the grammar, e.g., list ele-
ments and optional elements such as the else block in an if-else

statement. A practical consideration are separators and operators
that may reside between language constructs. For example, the
constructs FAILED and score <= 8 in this Java fragment can only
be discarded if the separator (,), respectively the operator (&&)
that connects these constructs with their preceding constructs are
discarded as well. To address this issue, we have extended the re-
gion selection schema with a candidate region consisting of the
original region plus the lexical token at the end of the preceding
sibling line.

public enum Grade {
EXCELLENT ,
PASSED ,

FAILED
}

Grade getGrade(){
...
if(
6 <= score &&

score <= 8
) return Grade.PASSED;
...

}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

26 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:27

Multi-line Comments and Strings. The selection procedure can
generally select erroneous regions that are not located at the fail-
ure location. However, if the distance between the error and the
failure location is too large, the region selection schema fails to
locate the error. A particularly problematic case commonly seen
in practice are unclosed flat structures such as block comments or
multi-line strings. After the opening of the block comment (/*),
the parser accepts all characters until the block comment is ended
(*/) or the end of the file is reached. As a consequence, a miss-
ing block comment ending is typically detected at a large distance
from the error location. The stack structure of the parser in these
scenarios is characterized by a reduction that involves many char-
acters starting from the characters that open the flat construct (/*).
If this stack structure is recognized, a candidate region is selected
from the start of the reduction, making it possible to cope with
flat multi-line structures such as block comments for which errors
may cause a parse failure far from the actual error location.

/* Comments ...
int foo(){

...
}
...
EOF

8. APPLYING ERROR RECOVERY IN AN INTERACTIVE ENVIRONMENT
A key goal of error recovery is its application in the construction of IDEs. Modern IDEs rely heavily
on parsers to produce abstract syntax trees that form the basis for editor services such as the outline
view, content completion, and refactoring. Users expect these services even when the program has
syntactic errors, which is very common when source code is edited interactively. Experience with
modern IDEs shows that for most services it is not a problem to operate on inaccurate or incomplete
information as a consequence of syntax errors; for some services such as refactorings, errors and
warnings can be presented to the user. In this section, we describe the role of error recovery in
different editor services and show language-parametric techniques for using error recovery with
these services.

8.1. Efficient Construction of Languages and Editor Services
While IDEs for languages have been constructed and used for several decades, only recently did
they become significantly more sophisticated and indispensable for productivity of software devel-
opers. In early 2001, IntelliJ IDEA [Saunders et al. 2006] revolutionized the IDE landscape [Fowler
2005b], setting a new standard for highly interactive and language-specific IDE support for tex-
tual languages. Since then, providing good IDE support for new languages has become mandatory,
posing a significant challenge for language engineers.

As IDEs become both more commonplace and more sophisticated, it becomes increasingly im-
portant to lower the threshold of creating new languages and developing IDEs for these languages. In
order to make this possible, language workbenches have been developed that combine the construc-
tion of languages and editor services. Language workbenches improve the productivity of language
engineers by providing specialized languages, frameworks, and tools [Fowler 2005a]. Examples of
language workbenches for textual languages include EMFText [Heidenreich et al. 2009], Monti-
Core [Krahn et al. 2008; Grönniger et al. 2008], Spoofax [Kats and Visser 2010], TCS [Jouault
et al. 2006], and Xtext [Efftinge and Voelter 2006].

The central artifact that language engineers define in a language workbench is the grammar of
a language, which is used to generate a parser. The generated parser runs in the background with
each key press or after a small delay passes, and provides a basis for all interactive editor services.
Traditionally, IDEs used handwritten parsers or only did a lexical analysis of source code for syntax
highlighting in real-time. By using a generated parser that runs every time the source code changes,
they have access to more accurate, more up-to-date information, but they also crucially depend on
the parser’s performance and its support for error recovery.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 27

A:28 M. de Jonge et al.

8.2. Guarantees on Recovery Correctness
Using permissive grammars, bridge parsing and regional recovery, the parser can construct ASTs
for syntactically incorrect inputs. These trees can be constructed using generated or handwritten
recovery rules, and may have gaps for regions that could not be parsed. Ultimately, error recovery
provides a speculative interpretation of the intended program, which may not always be the desired
interpretation. As such, it is both unavoidable and not uncommon that editor services operate on
inaccurate or incomplete information. Experience with modern IDEs shows that this is not a problem
in itself, as programmers are shown both syntactic and semantic errors directly in the editor.

While error recovery is ultimately a speculative interpretation of an incorrect input, our approach
does guarantee well-formedness of ASTs. That is, it will only produce ASTs with tree nodes that
conform to the abstract structure imposed by production rules of the original (non-permissive) gram-
mar. This property is maintained for all our recovery techniques. With respect to permissive gram-
mars (Section 4 and 5), water recovery rules (Section 4.2) and literal insertion recovery rules (Sec-
tion 4.3 and 4.5) do not contribute AST nodes, while insertion recovery rules for lexical productions
(Section 4.3, 4.5) only contribute lexical tree nodes that correspond to the recovered lexicals. Bridge
parsing (Section 6) and region recovery (Section 7) do not compromise the well-formedness prop-
erty of the parse result since both techniques only modify the input string respectively by adding a
literal and by skipping over a text fragment.

The property of well-formedness of trees significantly simplifies the implementation and specifi-
cation of editor services, as they do not require any special logic to handle badly parsed constructs
with missing nodes or special constructors. This approach also ensures separation of concerns: error
recovery is purely performed by the parser, while editor services do not have to treat syntactically
incorrect programs differently. This separation of concerns means that all editor services could be
implemented without any logic specific for error recovery. Still, there are a number of editor services
that inherently require some interaction with the recovery strategy, which we discuss next.

8.3. Syntactic Error Reporting
Syntax errors are reported to users by means of an error location and an error message. In tradi-
tional compilers, the error location was reported as a line/column offset, while modern IDEs use
the location for the placement of error markers in the editor. We use generic error messages that
depend on the class of recovery (Section 4.5). For water recovery rules and for region recoveries,
we use “[string] not expected,” for insertion rules we use “expected: [string],” and for insertion rules
that terminate a construct we use “construct not terminated.” The location at which the errors are
reported is determined by the location at which a recovery rule is applied, rather than by the loca-
tion of the parse failure. For region recoveries, where no recovery rule is applied, the start and end
location of the region, plus the original failure location is reported instead.

Figure 27 shows a screenshot of an editor for Stratego with embedded Java. The shown code
fragment contains two syntax errors. Due to error recovery, the editor can still provide syntax high-
lighting and other editor services, while it marks all the syntax errors inline with red squiggles.

8.4. Syntax Highlighting
Syntax highlighting has traditionally been based on a purely lexical analysis of programs. The most
basic approach is to use regular expressions to recognize reserved words and other constructs and
assign them a particular color. Unfortunately, for language engineers the maintenance of regular
expressions for highlighting can be tedious and error prone; a more flexible approach is to use the
grammar of a language. Using the grammar, a scanner can recognize tokens in a stream, which can
be used to assign colors instead.

More recent implementations of syntax highlighting do a full context-free syntax analysis, or
even use the semantics of a language for syntax highlighting. For example, they may assign Java
field accesses a different color than local variable accesses.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

28 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:29

Fig. 27. An editor for Stratego with embedded quotations of Java code.

Scannerless syntax highlighting. When using a scannerless parser such as SGLR, a scanner-based
approach to syntax highlighting is not an option; files must be fully parsed instead. This makes
it important that a proper parse tree is available at all times, even in case of syntactic errors. To
illustrate this, consider the following incomplete Java statement:
Tree t = new

Using a scanner, the word new can be recognized as one of the reserved keywords and can be high-
lighted as such. In the context of scannerless parsing, a well-formed parse tree must be constructed
for the keyword to be highlighted. In situations like this one, that may not be possible, resulting in
no highlighting for the new keyword.

Fallback syntax highlighting. Syntax highlighting is equally or possibly more important for syn-
tactically incorrect programs than for syntactically correct programs, as it indicates how the editor
interprets the program as a programmer is editing it. A fallback syntax highlighting mechanism is
needed to address this issue.

A natural way of implementing fallback syntax highlighting is by using a lexical analysis for
those cases where the full context-free parser is unable to distinguish the different words to be
highlighted. This analysis can be performed by a rudimentary tokenizer that can recognize separate
words such that they can be distinguished for colorization. Simple coloring rules can then be applied
to any tokens that do not belong to recovered tree nodes, e.g. highlighting all the reserved keywords
and string literals. Consequently, programmers get highly responsive syntax highlighting as they are
typing, even if the program is not (yet) syntactically correct. A limitation of the approach is that with
a tokenizer it cannot distinguish between keywords in different sublanguages, making the approach
only viable as a fall-back option. We use the fallback syntax highlighting for discarded regions and
in case the combined recovery technique fails, e.g. no AST is constructed for the erroneous program.

8.5. Content Completion
Content completion, sometimes called content assist, is an editor service that provides completion
proposals based on the syntactic and semantic context of the expression that is being edited. Where
other editor services should behave robustly in case of incomplete or syntactically incorrect pro-
grams, the content completion service is almost exclusively targeted towards incomplete programs.
Content completion suggestions must be provided regardless of the syntactic state of a program: an
incomplete expression ‘blog.’ does not conform to the syntax, but for content completion it must
still have an abstract representation.

Completion recovery rules. In case context completion is applied to an incomplete expression, the
syntactic context of that expression must be recovered. This is especially challenging for language
constructs with many elements, such as the “for” statement in the Java language. Even if only part of
such a statement is entered by a user, it is important for the content completion service that there is
an abstract representation for it. Based on the recovery rules of Section 4 this is not always the case.
Water recovery rules interpret the incomplete expression as layout. As a consequence, the syntactic

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 29

A:30 M. de Jonge et al.

context-free syntax

"for" "(" FormalParam ":" Expr ")" Stm ->
Stm {cons("ForEach")}

"for" "(" FormalParam ":" Expr ")"? ->
Stm {ast("ForEach(<1>, <2>, NULL())"), completion}

"for" "(" FormalParam ":"? ")"? ->
Stm {ast("ForEach(<1>, NULL(), NULL())"), completion}

Fig. 28. Java ForEach production and its derived completion rules.

context-free syntax

"for" "(" FormalParam ":" Expr ")"? ->
Stm {ast("ForEach(<1>, <2>, Block([]))"), completion}

Fig. 29. Java ForEach completion rule with placeholder pattern that matches the signature of the original production.

context is lost. Insertion recovery rules can recover some incomplete expressions, but only insert
missing terminal symbols.

We introduce specific recovery rules for content completion that specify what abstract represen-
tation to use for incomplete syntactic constructs. These rules use the {ast(p)} annotation of SDF
to specify a pattern p as the abstract syntax to construct. Figure 28 shows examples of these rules.
The first rule is a normal production rule for the Java “for each” construct. The second rule indicates
how to recover this statement if the Stm non-terminal is omitted, using a placeholder pattern NULL()

in place of the abstract representation of the omission. The third rule handles the case where both
non-terminals are omitted.

The completion recovery rules are automatically derived by analyzing the original productions in
the grammar, creating variations of existing rules with omitted non-terminals and terminals marked
as optional patterns. For best results, we generate rules that use placeholder patterns that reflect the
signature of the original production. Since these rules preserve the wellformedness property, they are
also applicable for normal error recovery. For example, in the second rule of Figure 28, the pattern
Block([]) can be used instead of the NULL() placeholder (Figure 29). Sensible placeholder patterns
are constructed by recursively analyzing the production rules for the omitted non-terminals. In the
given example, the production rule "{" Stm* "}" -> Stm {cons("Block")} provides the pattern
Block([]) as a placeholder for the Stm non-terminal, using the the empty list [] as the basic default
for list productions.

Runtime support. Completion recovery rules are designed to support the special scenario of re-
covering the expression where content completion is requested. The cursor location provides a hint
about the location of the (possible) error. Instead of backtracking after an error is found, we ap-
ply completion recovery rules if they apply to a character sequence that overlaps with the cursor
location. This approach adequately completes constructs at the cursor location and minimizes the
overhead of completion rules in normal parsing and other recovery scenarios. It also ensures that
the completion recovery rules have precedence over the normal water and insertion recovery rules
for the content completion scenario.

9. IMPLEMENTATION
We implemented our approach in Spoofax [Kats and Visser 2010], which is a language develop-
ment environment that combines the construction of languages and editor services. Using SDF and
JSGLR9, Spoofax has the distinguishing feature that it supports language compositions and embed-
dings. In this section we give an overview of the general system and we discuss the adaptations we
made for error recovery.

9http://strategoxt.org/Stratego/JSGLR/

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

30 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:31

source code jsglr parse forest
apply

disambiguation
filters

parse tree implode abstract syntax
tree

permissive
parse table

sdf2table

permissive
syntax definition

make
permissive

syntax definition

Fig. 30. Overview tool chain. Make-permissive generates a permissive version of the original grammar, for which a parse
table is constructed by sdf2tbl. The (permissive) parse table is used by JSGLR to construct a parse tree for a (possible
erroneous) input file, which is then imploded into an AST.

Figure 30 gives a general overview of the tool chain that handles parsing in Spoofax with in-
tegrated support for error recovery. Given a grammar definition in SDF, the make-permissive tool
generates a permissive version of this grammar, for which a parse table is constructed by sdf2table.
This parse table is used by the JSGLR parser, which constructs a parse tree for a (possible erroneous)
input file. The parse tree is first disambiguated by applying post-parse filters, and then imploded into
an AST.

The make-permissive tool was added to the tool chain specifically for the concern of error re-
covery. The tool implements a grammar-to-grammar transformation that applies the heuristic rules
described in Section 4.5 and Section 8.5 that guide the generation of recovery rules. The tool is
implemented in Aster [Kats et al. 2009], a language for decorated attribute grammars that extends
the Stratego transformation language.

We adapted the JSGLR parser implementation so that it can efficiently parse correct and incorrect
syntax fragments using the productions defined by the permissive grammar. For this reason, we
implemented a selective form of backtracking specificly for recover productions. Furthermore, we
implemented two additional recovery techniques, namely, bridge parsing and region selection. All
mentioned techniques are implemented in Java and integrated in the JSGLR implementation. To
summarize, we made the following adaptations to the Java based JSGLR parser:

— ignore productions labeled with the recover annotation during normal parsing
— ignore productions labeled with the completion annotation, unless the production applies to a

character sequence that overlaps with the cursor location, and the completion service is triggered
by the user.

— runtime disambiguation filter that selects the branch with the lowest number of recover/completion
productions, preferring insertions over water productions.

— implementations for the different recovery techniques described in Sections 5, 6, and 7.
— some code to integrate the different recovery techniques, as described below.

Integrating recovery techniques. We combine the different techniques described in this paper in a
multi-stage recovery approach (Figure 31). Region selection (RS) is applied first to detect the erro-
neous region. In case region selection fails to select the erroneous region, the whole file is selected
instead. In the second stage, the erroneous region is inspected by one of the correcting techniques,
bridge parsing (BP) or permissive parsing (PG). Since bridge parsing provides the most natural

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 31

A:32 M. de Jonge et al.

RS: select
erroneous region

BP: repair
scopes

recovery
succeeded? PG: recover

recovery
succeeded?

RR: skip
erroneous region

recovery
succeeded?

parser fails

continue parsing continue parsing continue parsing

recovery
fails

yes yes yes

no no no

Fig. 31. Overview integrated recovery approach implemented in JSGLR.

recoveries from a user perspective, it is applied first. The bridge parser returns a set of recovery sug-
gestions based on bracket insertions, which are applied during a re-parse of the erroneous region.
In case the bridge parser suggestions do not lead to a successful recovery, the permissive grammars
approach described in Sections 4 and 5 is used, where backtracking is restricted to the erroneous
region. In case both correcting techniques fail, the erroneous region is skipped (region recovery,
RR) as a fallback recovery strategy.

10. EVALUATION
We evaluate our approach with respect to the following properties:

— Quality of recovery: How well does the environment recover from input errors?
— Performance and scalability: What is the performance of the recovery technique? Is there a large

difference in parsing time between erroneous and correct inputs? Does the approach scale up to
large files?

— Editor feedback: How well do editor services perform based on the recovered ASTs?

In the remainder of this section we describe our experimental setup, experimentally select an effec-
tive combination of techniques and recovery rules, and show the quality and performance results of
the selection.

10.1. Setup
In this section we describe our experimental setup; we explain how we construct a realistic test set,
and how we measure recovery quality and performance.

10.1.1. Syntax Error Seeding. The development of representative syntax error benchmarks is a
challenging task, and should be automated in order to minimize the selection bias. There are many
factors involved for selecting the test inputs, such as the type of grammar, the type of error, distribu-
tion of errors over the file, and the layout characteristics of the test files. With these factors in mind,
we have taken the approach of generating a reasonably large set of syntactically incorrect files from
a smaller set of correct base files. We seed syntax errors at random locations in the base files, using
a set of rules that cover different types of common editing errors. These rules were established after
a statistical analysis of collected edit data for different languages [de Jonge and Visser 2012]. We
distinguish the following categories for seeded errors:

— Incomplete constructs, language constructs that miss one or more symbols at the suffix, e.g. an
incomplete for loop for (x = 1; x.

— Random errors, constructs that contain one or more token errors, e.g. missing, incorrect or super-
fluous symbols.

— Scope errors, constructs with missing or superfluous scope opening or closing symbols.
— String or comment errors, block comments or string literals that are not properly closed, e.g.,

/*...*
— Large erroneous regions, severely incorrect code fragments that cover multiple lines.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

32 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:33

— Language specific errors, errors that are specific for a particular language.
— Combined errors, two or more errors from the above mentioned categories, randomly distributed

over the source file.

10.1.2. Test Oracle. To measure the quality and performance of a recovery, we compare the re-
sults obtained for the recovered file against the results for the base file or expected file. In some
cases, the base file does not realistically reflect the expected result, as information is lost in the
generated erroneous file. For these cases we construct an expected result, a priori. For example, for
a “for” loop with an Incomplete construct error – such as for (x = 1; x – the original body of the
construct is lost. For this “for” loop, we complete the construct with the minimal amount of symbols
possible, which results in the expected construct for (x = 1; x;) {}.

10.1.3. Measuring Quality. We use two methods to measure the quality of the recovery results.
First, we do a manual inspection of the pretty-printed results, following the quality criteria of Pen-
nello and DeRemer [1978]. Following these criteria, an excellent recovery is one that is exactly the
same as the intended program, a good recovery is one that results in a reasonable program with-
out spurious or missed errors, and a poor recovery is a recovery that introduces spurious errors or
involves excessive token deletion. The Pennello and DeRemer criteria represent the state of the art
evaluation method for syntactic error recovery applied in, amongst others, [Pennello and DeRemer
1978; Pai and Kieburtz 1980; Degano and Priami 1995; Corchuelo et al. 2002].

Since human criteria form an evaluation method that is arguably subjective, as a second method,
we also do an automated comparison of the abstract syntax. For this, we print the AST of the
recovered file to text using the ATerm format [van den Brand et al. 2000], formatted so that nested
structures appear on separate lines. We then count the number of lines that differ in the recovered
AST compared to the AST of the expected file (the “diff”). The advantage of this approach is that
it is objective, and assigns a larger penalty to recoveries for which a larger area of the text does not
correspond to the expected file, where structures are nested improperly, or when multiple deviations
appear on what would be a single line of pretty-printed code. Furthermore, using this approach the
comparison can be automated, which makes it feasible to apply to larger test sets.

The scales for the figures we show are calibrated such that “no diff” corresponds to the excel-
lent qualification, a “small diff” (1–10 lines of abstract syntax) roughly corresponds to the good
qualification, and a “large diff” (> 10 lines) approximately corresponds to the poor qualification.
After a selection of recovery techniques and recovery rule sets, we show both metrics together in a
comprehensive benchmark in Section 10.2.3.

10.1.4. Measuring Performance. To compare the performance of the presented recovery tech-
nique under different configurations, we measure the additional time spent for error recovery. That
is, we compute the extra time it takes to recover from one or more errors (the recovery time) by sub-
tracting the parse time of the correct base file or expected file from the parse time of the incorrect
variation of this file.

To evaluate the scalability of the technique, we compare the parse times for erroneous and correct
files of different sizes in the interval 1, 000–15, 000 LOC.

For all performance measures included in this paper, an average, collected after three runs, is used.
All measuring is done on a “pre-heated” JVM running on a laptop with an Intel(R) Core(TM) 2 Duo
CPU P8600, 2.40GHz processor, 4 GB Memory.

10.1.5. Test sets. To evaluate quality and performance of the suggested recovery techniques we
use a test set of programs written in WebDSL, Stratego-Java, Java-SQL and Java, based on the
following projects:

— YellowGrass: A web-based issue tracker written in the WebDSL language.10

10http://www.yellowgrass.org/.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 33

A:34 M. de Jonge et al.

0 20 40 60 80 100

WCO
WC
CO

C
W

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

WCO
WC
CO

C
W

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Fig. 32. Quality and performance (recovery times) using a permissive grammar with different recovery rule sets for
Stratego-Java. W - Water, C - Insertion of closing brackets, O - Insertion of opening brackets.

— The Dryad compiler: An open compiler for the Java platform [Kats et al. 2008] written using
Stratego-Java.

— The StringBorg project: A tool and grammar suite that defines different embedded lan-
guages [Bravenboer et al. 2010], providing Java-SQL code.

— JSGLR: A Java implementation of the SGLR parser algorithm.11

We selected five representative base files from each project, and generated test files using the error
seeding technique. We applied a sanity check to ensure that generated test cases are indeed syntac-
tically incorrect and that there are no duplicates. In total, we generated 334 Stratego-Java test cases,
190 WebDSL test cases, 195 Java-SQL test cases, and 329 Java test cases. In addition, we generated
a second test set consisting of 314 Stratego-Java test cases in the Incomplete construct and Erro-
neous context categories specifically to evaluate the content completion editor service. Finally, for
testing of scalability, we manually constructed a test set consisting of 28 erroneous Stratego-Java
files of increasing size in the interval of 1, 000–15, 000 LOC.

10.2. Experiments
There are a large number of configurations to consider in evaluating the presented approach: com-
binations of languages, recovery rule sets, and recovery techniques. In order to limit the size of the
presented results, we first concentrate on one language and experiment with different configuration
of recovery rule sets and recovery techniques. For these initial experiments we use the Stratego-
Java language – a fairly complex language embedding. After selecting an effective configuration,
we perform additional experiments with other languages.

10.2.1. Selecting a Recovery Rule Set. In this experiment we focus on selecting the most ef-
fective recovery rule set for a permissive grammar with respect to quality and performance. The
permissive grammar technique is used in combination with region selection, described in Section 7.
That is, the recovery rules are applied on a selected erroneous region, but the fallback region recov-
ery technique is disabled since it obscures failed recoveries obtained for the evaluated rule sets. In
this experiment, we set a time limit of 5 seconds to cut off recoveries that take an (almost) infinite
time to complete.

11http://strategoxt.org/Stratego/JSGLR/.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

34 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:35

For the permissive grammars approach of Section 4, there are three recovery rule sets that we
evaluate in isolation and in combination – Water (W), insertion of Closing brackets (C), and inser-
tion of Open brackets (O). Results from the experiment are shown in Figure 32. The figure includes
results for W, C, CO, WC and WCO for a Stratego-Java grammar. The remaining combinations, O
and WO, were excluded since it is arguably more important to insert closing brackets than to insert
open brackets in an interactive editing scenario.

The results show that the insertion of closing brackets (C) and the application of water rules (W)
both contribute to the quality of a recovery. Combined together (WC) they further improve recovery
results. The insertion of opening brackets (O) does improve the recovery quality for insertion-only
grammars, which follows from comparing C to CO. However, when all rules are combined (WCO),
the recovery quality decreases in comparison with the WC grammar. This slightly unexpected result
is partly explained by the fact that the insertion rules for opening brackets prove to be too costly
with respect to performance, which leads to failures because of exceeding of the time limit set. A
second explanation is that the combined rule set (WCO) allows many creative recoveries that often
do not correspond to the human intended recoveries. We conclude that WC seems to be the best
trade off between Quality and Performance.

In this experiment we only set a limit on the number of lines (75) that were inspected during
backtracking, and a time limit of 5 seconds to cut off recoveries that take an (almost) infinite time
to complete. The performance diagram shows that this leads to objectionable parse times in certain
cases, 4.4% > 1.0 seconds and 15.2% > 5.0 seconds (failures) for WC. For these cases, a practical
implementation would opt for an inferior recovery result obtained by applying a fallback strategy
(region skipping in our approach). We apply this strategy in the remainder of this section, setting a
time limit of 1000 milliseconds on the time spent applying recovery rules.

10.2.2. Selecting Recovery Techniques. In this experiment, we focus on selecting the best parser
configuration combining the recovery techniques presented in this paper: the permissive grammars
and backtracking approach of Section 4 and 5 (PG), bridge parsing of Section 6 (BP), and the region
selection technique of Section 7 (RS), which can be applied as a fall back recovery technique (RR)
by skipping the selected region. We use the WC recovery rule set of Section 10.2.1. and the Stratego-
Java test set. We first applied the techniques in isolation: first regional recovery by skipping regions
(RR), and then parsing with permissive grammars (PG). Bridge parsing is not evaluated separately,
since it has a limited application scope and only works as a supplementary method. We then evaluate
the approaches together: first parsing with permissive grammars applied to a selected region (RS-
PG), then adding region recovery (RR) as a fallback recovery technique (RS-PG-RR), and finally
the combination of all three techniques together (RS-BP-PG-RR). Throughout this experiment, we
set a time limit of 1 second for applying recovery rules (PG). The results from the experiment are
shown in Figure 33.

Figure 33 (Performance) shows the performance results for the different combinations of tech-
niques. The results show that region recovery (RR) gives good performance in all cases, and that
region selection (RS) positively affects the performance of the permissive grammar technique (RS-
PG versus PG). Furthermore, applying the bridge parsing technique (BP) does not negatively affect
performance according to Figure 33 (RS-PG-BP-RR versus RS-PG-RR). Since all techniques give
reasonable performance, we focus on quality to find the best combination of techniques.

Considering the Quality part of Figure 33 and the results of PG, we see that it has the largest
number of failed recoveries (17%), but regardless of this fact it still leads to reasonable recoveries
(< 10 diff lines) in the majority of cases (75%). Restricting PG to a selected erroneous region (RS-
PG) leads to more excellent recoveries (48% versus 44%). For regional recovery (RR), the situation
is exactly the opposite. As expected, skipping a whole region in most cases does not lead to the
optimal recovery. However, the skipping technique does provide a robust mechanism, leading to
a successful parse in most cases (94%). Combining both techniques (RS-PG-RR), improves the
robustness (96%), as well as the precision (80% small or no diff) compared to both individual
techniques.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 35

A:36 M. de Jonge et al.

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

RS-PG
PG
RR

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

RS-PG
PG
RR

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Fig. 33. Quality and performance (recovery times) using combinations of techniques for Stratego-Java. RR - Region
selection and recovery, PG - Permissive grammars, RS - Region selection, BP - Bridge parsing.

Interestingly, Figure 33 shows little beneficial effects of the bridge parsing method (BP). There is
a strong use case for bridge parsing, as it can pick the most likely recovery in case of a syntax error
that affects scoping structures. However, the technique is most effective for programs that use deep
nesting of blocks, which are relatively rare in Stratego-Java programs. Still, the approach shows no
harmful effects. For other languages its positive effects tend to be more pronounced, as we have
shown in [de Jonge et al. 2009]. In this previous study, a test set with focus on scope errors is used;
showing that bridge parsing improves the results of the permissive grammar technique in 21% of
the cases where one or more scope errors occur. The cases where the bridge parser contributes to a
better recovery are cases where the region selection technique does not detect the erroneous scope
as precisely on its own, which is typical for fragments with multiple clustered scope errors.

10.2.3. Overall benchmark. As an overall benchmark, we compare the quality of our techniques
to the parser used by Eclipse’s Java Development Tools (JDT). It should be noted that, while our
approach uses fully automatically derived recovery specifications, the JDT parser in contrast, uses
specialized, handwritten recovery rules and methods. We use the JDT parser with statement-level
recovery enabled, following the guidelines given by Kuhn and Thomann [2006].

Both Eclipse and our approach apply an additional recovery technique in the scenario of content
completion. Both techniques use specific completion recovery rules that require the completion
request (cursor) location as additional information, also, these rules construct special completion
nodes that may not represent valid Java syntax. We did not include these techniques in this general
benchmark section since they specifically target the use case of content completion and do not work
in other scenarios.

Figure 34 shows the quality results acquired for the Java test set, using diff counts and applying
the criteria of Pennello and DeRemer [1978]. To ensure that all the results are obtained in a reason-
able time span, we set a parse time limit of 1 second. The results show that the SGLR recovery, using
different steps and granularity, is in particular successful in avoiding large diffs, thereby providing
more precise recoveries compared to the JDT parser. The JDT parser on the other hand managed to
construct an excellent recovery in 67% of the cases, which is a bit better than the 62% of the SGLR
parser. The SGLR parser failed to construct an AST in less than 1% of the cases, while the JDT
parser constructed an AST in all cases. However, manual inspection revealed that in most large diff
cases only a very small part of the original file was reconstructed, e.g. only the import lines or the
import lines plus the class declaration whereby all declarations in the body were skipped. We con-
clude that our automatically derived recovery technique is at least on par with practical standards.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

36 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:37

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

JDT

% of Files

Quality (diffs)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

RS-BP-PG-RR
RS-PG-RR

JDT

% of Files

Quality (manual assessment)

Excellent
Good
Poor
Failed

Fig. 34. Quality of our approach compared to JDT. RS - Region selection, RR - Region recovery, PG - Permissive gram-
mars, BP - Bridge parsing, JDT - Java Developer Toolkit.

0 20 40 60 80 100

WebDSL
Java-SQL

Str.-Java
Java

Quality (% of Files)

No diff (0)
Small diff (0–10)
Large diff (> 10)
Failed

0 20 40 60 80 100

WebDSL
Java-SQL

Str.-Java
Java

Performance (% of Files)

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms
Failed

Fig. 35. Quality and performance (recovery times) for different languages.

10.2.4. Cross-language quality and performance. In this experiment we test the applicability of
our approach to different languages, using the RS-BP-PG-RR configuration and the WC rule set.
For simplicity and to ensure a clear cross-language comparison, we focus only on syntax errors that
do not require manual reconstruction of the expected result, i.e., Random errors, Scope errors and
String or comment errors. This allows for a fully automated comparison of erroneous and intended
parser outputs. The results of the experiment are shown in Figure 35. The figure shows good results
and performance across the different languages. From the diagram it follows that the quality of
the recoveries varies for the different test sets. More specifically, the recoveries for Java-SQL, in
general, are better than the ones for Stratego-Java. Differences like these are both hard to explain
and predict, and depend on the characteristics of a particular language, or language combination, as
well as the test programs used.

10.2.5. Performance and Scalability. In this experiment we focus on the performance of our ap-
proach. We want to study scalability and the potential performance drawbacks of adding recovery
rules to a grammar, i.e., the effect of increasing the size of the grammar. We use the Stratego-Java
language throughout this experiment with the RS-BP-PG-RR recovery configuration.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 37

A:38 M. de Jonge et al.

0 0.25 0.5 0.75 1 1.25 1.5

·104
0

2,000

4,000

6,000

LOC

Pa
rs

e
tim

e
(m

s)
5 Errors (RR-BP-PG)
0 Errors (RR-BP-PG)
0 Errors (Standard)

Fig. 36. Parse times for files of different length with and without errors. The files are written in the Stratego-Java language
and parsed with the RR-BP-PG recovery configuration.

To test scalability, we construct a test set consisting of files of different size in the interval 1, 000–
15, 000 LOC, obtained by duplicating 500-line fragments from a base file in the Stratego-Java test
set. For each test file, the same number of syntax errors are added manually, scattered in such a way
that clustering of errors does not occur. We measure parse times as a function of input size, both
for syntactically correct files and for files that contain syntax errors. The results, shown as a plot in
Figure 36, show that parse times increase linearly with the size of the input, both for correct and
for incorrect files. Furthermore, the extra time required to recover from an error (recovery time) is
independent of the file size, which follows from the fact that both lines in the figure have the same
coefficient.

As an additional experiment we study the performance drawbacks in the increased size of a
permissive grammar. The extra recovery productions added to a grammar to make it more permissive
also increase the size of that grammar, which may negatively affect parse times of syntactically
correct inputs. We measure this effect by comparing parse times of the syntactically correct files
in the test set, using the standard grammar and the WC permissive grammar. The results show that
the permissive grammar has a small negative effect on parse times of syntactically correct files. The
effect of modifying the parser implementation to support backtracking was also measured, but no
performance decrease was found. We consider the small negative performance effect on parsing
syntactically correct files acceptable since it does not significantly affect the user experience for
files of reasonable size.

10.2.6. Content Completion. Error recovery helps to provide editor services on erroneous input.
Especially challenging is the content completion service, which almost exclusively targets incom-
plete programs. In Section 8.5 we discussed the strengths and limitations of our current approach
with respect to content completion. To overcome the limitations, we introduced a technique to au-
tomatically derive special completion rules that are applied near the cursor location. In this section
we evaluate how well the current approach (water and insertion rules) serve the purpose of content
completion, and how the completion rules improve on this.

We evaluated completion recovery on a set of 314 test cases that simulate the scenario of a pro-
grammer triggering the content completion service. Accurate completion suggestions require that
the syntactic context, the tree node where completion is requested, is available in the recovered tree.
To evaluate the applicability with respect to content completion, we distinguish between recoveries
that preserve the syntactic context required for content completion and those that do not.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

38 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:39

0 20 40 60 80 100

Completion

WC

% of Files

Context Preservation

Context
No context

0 20 40 60 80 100

Completion

WC

% of Files

Performance

0–100 ms
100–500 ms
500–1000 ms
> 1000 ms

Fig. 37. Context preservation and performance (recovery times) of the Stratego-Java grammar extended with completion
rules (Completion) and extended with recovery rules (WC).

Figure 37 shows the results for our recovery technique with and without the use of completion
recovery. Using the original approach (with the WC rule set), the syntactic context was preserved
in 77 percent of the cases, which shows that the recovery approach is useful for content completion,
but is prone to unsatisfactory recoveries in certain cases. Furthermore, recovering large incomplete
constructs can be inefficient since it requires many water and insertion rule applications.

Both problems are addressed by the completion recovery technique, which is specifically de-
signed to handle syntax errors that involve incomplete language constructs. Figure 37 shows the
results for the completion recovery strategy of Section 8.5, using a permissive grammar with the
WC rule set plus completion rules. Using this strategy, the syntactic context is preserved in all
cases, without noticeable time overhead. The low recovery times are a consequence of the (adapted)
runtime support that exploits the fact that the cursor location is part of the erroneous construct.

A disadvantage of the completion rules is that they significantly increase the size of the grammar,
which can negatively affect the parsing performance for syntactically correct inputs. We compared
parse times of syntactically correct inputs for the WC/Completion grammar with parse times for
the WC grammar, and measured an overhead factor of 1.2. Given that completion rules are highly
effective and essential for the content completion functionality, this overhead seems acceptable. For
normal editing scenarios, the completion rules can also be applied as an additional recovery mecha-
nism that is effective only at the cursor location, although we have not focused on this capability in
the experiments in this section.

10.3. Summary
In this section we evaluated the quality and performance of different rule sets for permissive gram-
mars, and different configurations for parsing with permissive grammars, region recovery, and
bridge parsing. Through experimental evaluation we found that the WC rule set provides the best
balance in quality and performance. The three techniques each have their merits in isolation, and
work best in combination. Through additional experiments we showed that the recovery quality and
performance hold up to the standard set by the JDT, that our approach is scalable, and that it works
across multiple languages. In addition, we showed its effectiveness for content completion.

11. RELATED WORK
The problem of handling syntax errors during parsing has been widely studied [Lévy 1971; Mauney
and Fischer 1988; Pai and Kieburtz 1980; Barnard and Holt 1982; Tai 1978; Fischer et al. 1980;
Degano and Priami 1995; McKenzie et al. 1995; Corchuelo et al. 2002]. We focus on LR parsing

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 39

A:40 M. de Jonge et al.

for which there are several different error recovery techniques [Degano and Priami 1995]. These
techniques can be divided into correcting and non-correcting techniques.

The most common non-correcting technique is panic mode: on detection of an error, the input is
discarded until a synchronization token is reached. When a synchronizing token is reached, states
are popped from the stack until the state at the top enables the resumption of the parsing process. Our
layout-sensitive regional recovery algorithm can be used in a similar fashion, but selects discardable
regions based on layout.

Correcting recovery methods for LR parsers typically attempt to insert or delete tokens nearby
the location of an error, until parsing can resume [Tai 1978; McKenzie et al. 1995; Cerecke 2002].
There may be several possible corrections of an error which means a choice has to be made. One
approach applied by Tai [1978] is to assign a cost (a minimum correction distance) to each possible
correction and then choose the correction with the least cost. This approach of selecting recoveries
based on a minimum cost is related to recovery selection in our permissive grammars, where the
number of recovery rules used in a correction decides the order in which recoveries are considered
(Section 4).

Successful recovery mechanisms often combine more than one technique [Degano and Priami
1995]. For example, panic mode is often used as a fall back method if correction attempts fail.
Burke and Fisher [1987] present a correcting method based on three phases of recovery. The first
phase looks for simple correction by the insertion or deletion of a single token. If this does not lead
to a recovery, one or more open scopes are closed. The last phase consists of discarding tokens that
surround the parse failure location. In our work we take indentation into account, for the regional
recovery technique and for scope recovery using bridge parsing. In addition, by starting with region
selection, the performance as well as the quality of the permissive grammars approach recovery is
improved.

Regional error recovery methods [Lévy 1971; Mauney and Fischer 1988; Pai and Kieburtz 1980;
Barnard and Holt 1982] select a region that encloses the point of detection of an error. Typi-
cally, these regions are selected based on nearby marker tokens (also called fiducial tokens [Pai
and Kieburtz 1980], or synchronizing symbols [Barnard and Holt 1982]), which are language-
dependent. In our approach, we assign regions based on layout instead. Layout-sensitive regional
recovery requires no language-specific configuration, and we showed it to be effective for a variety
of languages. Similar to the fiducial tokens approach, it depends on the assumption that languages
have recognizable (token or layout) structures that serve for the identification of regions.

Barnard and Holt [1982] presents an hierarchic error repair approach using phases corresponding
to lists of lines. For instance, a phase may be a set of declarations that must appear together. These
phases are similar to our regions, with the difference that regions are constructed based on layout.
Both approaches have some kind of local repair within phases or regions, and may skip parts of the
input.

The LALR Parser Generator (LPG) [Charles 1991] is incorporated into IMP [Charles et al. 2007]
and is used as a basis for the Eclipse JDT parser. LPG can derive recovery behavior from a grammar,
and supports recovery rules in the grammar and through semantic actions. Similar to our approach,
LPG detects scopes in grammars. However, unlike our approach, it does not take indentation into
account for scope recovery.

11.1. Recovery for Composite Languages
Using SGLR parsing, our approach can be used to parse composed languages and languages with
a complex lexical syntax. In related work, only a study by Valkering [2007], based on substring
parsing [Rekers and Koorn 1991], offered a partial approach to error recovery with SGLR parsing.
To report syntactic errors, Valkering inspects the stack of the parser to determine the possible strings
that can occur at that point. Providing good feedback this way is non-trivial since scannerless parsing
does not employ tokens; often it is only possible to report a set of expected characters instead.
Furthermore, these error reports are still biased with respect to the location of errors; because of
the scannerless, generalized nature of the parser, the point of failure rarely is a good indication

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

40 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:41

of the actual location of a syntactic error. Using substring parsing and artificial reduce actions,
Valkering’s approach could construct a set of partial, often ambiguous, parse trees, whereas our
approach constructs a single, well-formed parse tree.

Lavie and Tomita [1993] developed GLR*, a noise skipping algorithm for context-free grammars.
Based on traditional GLR with a scanner, their parser determines the maximal subset of all possible
interpretations of a file by systematically skipping selected tokens. The parse result with the fewest
skipped words is then used as the preferred interpretation. In principle, the GLR* algorithm could
be adapted to be scannerless, skipping characters rather than tokens. However, doing so would
lead to an explosion in the number of interpretations. In our approach, we restrict these by using
backtracking to only selectively consider the alternative interpretations, and using water recovery
rules that skip over chunks of characters. Furthermore, our approach supports insertions in addition
to discarding noise and provides more extensive support for reporting errors.

Composed languages are also supported by parsing expression grammars (PEGs) [Ford 2002;
Grimm 2006]. PEGs lack the declarative disambiguation facilities [Visser 1997c] that SDF provides
for SGLR. Instead, they use greedy matching and enforce an explicit ordering of productions. To our
knowledge, no automated form of error recovery has been defined for PEGs. However, existing work
on error recovery using parser combinators [Swierstra and Duponcheel 1996] may be a promising
direction for recovery in PEGs. Furthermore, based on the ordering property of PEGS, a “catch all”
clause is sometimes added to a grammar, which is used if no other production succeeds. Such a
clause can skip erroneous content up to a specific point (such as a newline) but does not offer the
flexibility of our approach.

11.2. IDE support for Composite Languages
We integrated our recovery approach into the Spoofax [Kats et al. 2010] language workbench. A
related project, also based on SDF and SGLR, is the Meta-Environment [van den Brand et al. 2002;
van den Brand et al. 2007]. It currently does not employ interactive parsing, and only parses files
after a “save” action from the user. Using the traditional SGLR implementation, it also does not
provide error recovery.

Another language development environment is MontiCore [Krahn et al. 2007; Krahn et al. 2008].
Based on ANTLR [Parr and Quong 1995], it uses traditional LL(k) parsing. As such, MontiCore of-
fers only limited support for language composition and modular definition of languages. Combining
grammars can cause conflicts at the context-free or lexical grammar level. For example, any keyword
introduced in one part of the language is automatically recognized by the scanner as a keyword in
another part. MontiCore supports a restricted form of embedded languages through run-time switch-
ing to a different scanner and parser for certain tokens. Using the standard error recovery mechanism
of ANTLR, it can provide error recovery for the constituent languages. However, recovery from er-
rors at the edges of the embedded fragments (such as missing quotation brackets), is more difficult
using this approach. This issue is not addressed in the papers on MontiCore [Krahn et al. 2007;
Krahn et al. 2008]. In contrast to MontiCore, our approach is based on scannerless generalized-LR
parsing, which supports the full set of context-free grammars, and allows composition of grammars
without any restrictions.

11.3. Island Grammars
The basic principles of our permissive grammars and bridge parsing are based on the water produc-
tions from island grammars. Island grammars [van Deursen and Kuipers 1999; Moonen 2001] have
traditionally been used for different reverse and re-engineering tasks. For cases where a baseline
grammar is available (i.e., a complete grammar for some dialect of a legacy language), Klusener
and Lämmel [2003] present an approach of deriving tolerant grammars. Based on island grammars,
these are partial grammars that contain only a subset of the baseline grammar’s productions, and
are more permissive in nature. Unlike our permissive grammars, tolerant grammars are not aimed at
application in an interactive environment. They do not support the notion of reporting errors, and,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 41

A:42 M. de Jonge et al.

like parsing with GLR*, are limited to skipping content. Our approach supports recovery rules that
insert missing literals and provides an extensive set of error reporting capabilities.

More recently, island grammars have also been applied to parse composite languages. Synytskyy
et al. [2003] composed island grammars for multiple languages to parse only the interesting bits
of an HTML file (e.g., JavaScript fragments and forms), while skipping over the remaining parts.
In contrast, we focus on composite languages constructed from complete constituent grammars.
From these grammars we construct permissive grammars that support tolerant parsing for complete,
composed languages.

12. CONCLUSION
Scannerless, generalized parsers support the full set of context-free grammars, which is closed under
composition. With a grammar formalism such as SDF, they can be used for declarative specification
and composition of syntax definitions. Error recovery for scannerless, generalized parsers has previ-
ously been identified as an open issue. In this paper, we presented a flexible, language-independent
approach to error recovery to resolve this issue.

We presented three techniques for error recovery. First, permissive grammars, to relax grammars
with recovery rules so that strings can be parsed that are syntactically incorrect according to the orig-
inal grammar. Second, backtracking, to efficiently parse files without syntax errors and to gracefully
cope with errors locally. Third, region recovery, to identify regions of syntactically incorrect code,
thereby constraining the search space of backtracking and providing a fallback recovery strategy.
Using bridge parsing, this technique takes indentation usage into account to improve recoveries
of scoping constructs. We evaluated our approach using a set of existing, non-trivial grammars,
showing that the techniques work best when used together, and that they have a low performance
overhead and good or excellent recovery quality in a majority of the cases.

Acknowledgments. This research was supported by NWO/JACQUARD projects 612.063.512,
TFA: Transformations for Abstractions, and 638.001.610, MoDSE: Model-Driven Software Evolu-
tion. We thank Karl Trygve Kalleberg, whose Java-based SGLR implementation has been invaluable
for this work, and Mark van den Brand, Martin Bravenboer, Giorgios Rob Economopoulos, Jurgen
Vinju, and the rest of the SDF/SGLR team for their work on SDF.

REFERENCES
BARNARD, D. T. AND HOLT, R. C. 1982. Hierarchic syntax error repair for LR grammars. International Journal of Com-

puter and Information Sciences 11, 4, 231–258.
VAN DEN BRAND, M. G. J., DE JONG, H., KLINT, P., AND OLIVIER, P. 2000. Efficient annotated terms. Software, Practice

& Experience 30, 3, 259–291.
BRAVENBOER, M., DOLSTRA, E., AND VISSER, E. 2007. Preventing injection attacks with syntax embeddings. In Genera-

tive Programming and Component Engineering, 6th International Conference, GPCE 2007, C. Consel and J. L. Lawall,
Eds. ACM, Salzburg, Austria, 3–12.

BRAVENBOER, M., DOLSTRA, E., AND VISSER, E. 2010. Preventing injection attacks with syntax embeddings. Science of
Computer Programming 75, 7, 473–495.

BRAVENBOER, M., KALLEBERG, K. T., VERMAAS, R., AND VISSER, E. 2008. Stratego/XT 0.17. A language and toolset
for program transformation. Science of Computer Programming 72, 1-2, 52–70.

BRAVENBOER, M. AND VISSER, E. 2004. Concrete syntax for objects: domain-specific language embedding and assimila-
tion without restrictions. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2004, J. M. Vlissides and D. C. Schmidt, Eds. ACM, Vancouver,
BC, Canada, 365–383.

BRAVENBOER, M., ÉRIC TANTER, AND VISSER, E. 2006. Declarative, formal, and extensible syntax definition for AspectJ.
In Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2006, P. L. Tarr and W. R. Cook, Eds. ACM, 209–228.

BURKE, M. G. AND FISHER, G. A. 1987. A practical method for LR and LL syntactic error diagnosis and recovery. ACM
Trans. Program. Lang. Syst. 9, 2, 164–197.

CERECKE, C. 2002. Repairing syntax errors in lr-based parsers. In ACSC, M. J. Oudshoorn, Ed. CRPIT Series, vol. 4.
Australian Computer Society, 17–22.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

42 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:43

CHARLES, P. 1991. A practical method for constructing efficient lalr(k) parsers with automatic error recovery. Ph.D. thesis,
New York University.

CHARLES, P., FUHRER, R. M., AND SUTTON, JR., S. M. 2007. IMP: a meta-tooling platform for creating language-specific
IDEs in Eclipse. In Automated Software Engineering (ASE 2007), R. E. K. Stirewalt, A. Egyed, and B. Fischer, Eds.
ACM, 485–488.

CORCHUELO, R., PÉREZ, J. A., CORTÉS, A. R., AND TORO, M. 2002. Repairing syntax errors in LR parsers. ACM Trans.
Program. Lang. Syst. 24, 6, 698–710.

DE JONGE, M., NILSSON-NYMAN, E., KATS, L. C. L., AND VISSER, E. 2009. Natural and flexible error recovery for
generated parsers. In Software Language Engineering, Second International Conference, SLE 2009, M. van den Brand,
D. Gasevic, and J. Gray, Eds. Lecture Notes in Computer Science Series, vol. 5969. Springer, 204–223.

DE JONGE, M. AND VISSER, E. 2012. Automated evaluation of syntax error recovery. Tech. Rep. TUD-SERG-2012-035,
Delft University of Technology, Software Engineering Research Group, Delft, The Netherlands.

DEGANO, P. AND PRIAMI, C. 1995. Comparison of syntactic error handling in LR parsers. Software – Practice and Expe-
rience 25, 6, 657–679.

DUCASSE, S., NIERSTRASZ, O., SCHÄRLI, N., WUYTS, R., AND BLACK, A. 2006. Traits: A mechanism for fine-grained
reuse. Transactions on Programming Languages and Systems (TOPLAS) 28, 2, 331–388.

EFFTINGE, S. AND VOELTER, M. 2006. oAW xText: a framework for textual DSLs. In Workshop on Modeling Symposium
at Eclipse Summit.

FISCHER, C. N., MILTON, D. R., AND QUIRING, S. B. 1980. Efficient LL(1) error correction and recovery using only
insertions. Acta Inf. 13, 141–154.

FORD, B. 2002. Packrat parsing: Simple, powerful, lazy, linear time. In International Conference on Functional Program-
ming (ICFP’02). SIGPLAN Notices Series, vol. 37. ACM, 36–47.

FOWLER, M. 2005a. Language workbenches: The killer-app for domain specific languages?
FOWLER, M. 2005b. PostIntelliJ. http://martinfowler.com/bliki/PostIntelliJ.html.
GRIMM, R. 2006. Better extensibility through modular syntax. In PLDI. 38–51.
GRÖNNIGER, H., KRAHN, H., RUMPE, B., SCHINDLER, M., AND VÖLKEL, S. 2008. Monticore: a framework for the

development of textual domain specific languages. In ICSE. 925–926.
HEERING, J., HENDRIKS, P. R. H., KLINT, P., AND REKERS, J. 1989. The syntax definition formalism sdf. SIGPLAN

Not. 24, 11, 43–75.
HEIDENREICH, F., JOHANNES, J., KAROL, S., SEIFERT, M., AND WENDE, C. 2009. Derivation and refinement of textual

syntax for models. In ECMDA-FA. 114–129.
JOHNSTONE, A., SCOTT, E., AND ECONOMOPOULOS, G. 2004. Generalised parsing: Some costs. Lecture Notes in Com-

puter Science 2985, 89–103.
JOUAULT, F., BÉZIVIN, J., AND KURTEV, I. 2006. TCS: a DSL for the specification of textual concrete syntaxes in model

engineering. In Generative and Component Engineering (GPCE’06). ACM, 249–254.
KATS, L. C. L., BRAVENBOER, M., AND VISSER, E. 2008. Mixing source and bytecode: a case for compilation by nor-

malization. In Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, G. E. Harris, Ed. ACM, 91–
108.

KATS, L. C. L., DE JONGE, M., NILSSON-NYMAN, E., AND VISSER, E. 2009. Providing rapid feedback in generated
modular language environments. Adding error recovery to scannerless generalized-LR parsing. In Proceedings of the
24th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2009), G. T. Leavens, Ed. ACM SIGPLAN Notices Series, vol. 44. ACM Press, New York, NY, USA, 445–464.

KATS, L. C. L., DE JONGE, M., NILSSON-NYMAN, E., AND VISSER, E. 2011. The permissive grammars project. http:
//strategoxt.org/Stratego/PermissiveGrammars.

KATS, L. C. L., KALLEBERG, K. T., AND VISSER, E. 2010. Domain-specific languages for composable editor plugins. In
Proceedings of The Ninth Workshop on Language Descriptions, Tools, and Applications (LDTA 2009). ENTCS Series,
vol. 253. Elsevier.

KATS, L. C. L., SLOANE, A. M., AND VISSER, E. 2009. Decorated attribute grammars: Attribute evaluation meets strategic
programming. In Compiler Construction, 18th International Conference, CC 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, O. de Moor
and M. I. Schwartzbach, Eds. Lecture Notes in Computer Science Series, vol. 5501. Springer, 142–157.

KATS, L. C. L. AND VISSER, E. 2010. The Spoofax language workbench: rules for declarative specification of languages
and IDEs. In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, W. R. Cook, S. Clarke, and M. C. Rinard, Eds. ACM, Reno/Tahoe,
Nevada, 444–463.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 43

A:44 M. de Jonge et al.

KATS, L. C. L., VISSER, E., AND WACHSMUTH, G. 2010. Pure and declarative syntax definition: paradise lost and regained.
In Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2010, W. R. Cook, S. Clarke, and M. C. Rinard, Eds. ACM, Reno/Tahoe, Nevada, 918–932.

KICZALES, G., LAMPING, J., MENHDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN, J.
1997. Aspect-oriented programming. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP’07), M. Akşit and S. Matsuoka, Eds. LNCS Series, vol. 1241. Springer, 220–242.

KLUSENER, S. AND LÄMMEL, R. 2003. Deriving tolerant grammars from a base-line grammar. In International Conference
on Software Maintenance (ICSM ’03). IEEE Computer Society, 179–189.

KRAHN, H., RUMPE, B., AND VÖLKEL, S. 2007. Efficient editor generation for compositional DSLs in Eclipse. In Pro-
ceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling. technical report TR-38. University of Jyväskylä,
218–228.

KRAHN, H., RUMPE, B., AND VÖLKEL, S. 2008. MontiCore: Modular development of textual domain specific languages.
In TOOLS EUROPE 2008, R. Paige and B. Meyer, Eds. Lecture Notes in Business Information Processing Series,
vol. 11. Springer-Verlag, 297–315.

KUHN, T. AND THOMANN, O. 2006. Eclipse corner: Abstract syntax tree. http://eclipse.org/articles/
article.php?file=Article-JavaCodeManipulation_AST/index.html.

LAVIE, A. AND TOMITA, M. 1993. GLR*-an efficient noise skipping parsing algorithm for context free grammars. In Third
International Workshop on Parsing Technologies. 123–134.

LÉVY, J.-P. 1971. Automatic correction of syntax errors in programming languages. Ph.D. thesis, Ithaca, NY, USA.
MAUNEY, J. AND FISCHER, C. 1988. Determining the extent of lookahead in syntactic error repair. ACM Trans. Program.

Lang. Syst. (TOPLAS) 10, 3, 456–469.
MCKENZIE, B. J., YEATMAN, C., AND VERE, L. D. 1995. Error repair in shift-reduce parsers. ACM Trans. Program.

Lang. Syst. 17, 4, 672–689.
MOONEN, L. 2001. Generating robust parsers using island grammars. In Working Conference on Reverse Engineering

(WCRE’01). IEEE, 13–22.
MOONEN, L. 2002. Lightweight impact analysis using island grammars. In Proceedings of the 10th IEEE International

Workshop of Program Comprehension. IEEE Computer Society, 219–228.
NILSSON-NYMAN, E., EKMAN, T., AND HEDIN, G. 2009. Practical scope recovery using bridge parsing. In Software

Language Engineering (SLE 2008), D. Gasevic, R. Lämmel, and E. V. Wyk, Eds. LNCS Series, vol. 5452. Springer,
95–113.

PAI, A. AND KIEBURTZ, R. 1980. Global Context Recovery: A New Strategy for Syntactic Error Recovery by Table-Drive
Parsers. ACM Trans. Program. Lang. Syst. (TOPLAS) 2, 1, 18–41.

PARR, T. AND FISHER, K. 2011. Ll(*): the foundation of the antlr parser generator. In PLDI. 425–436.
PARR, T. AND QUONG, R. 1995. ANTLR: A predicated-LL(k) parser generator. Software: Practice and Experience 25, 7,

789–810.
PENNELLO, T. J. AND DEREMER, F. 1978. A forward move algorithm for LR error recovery. In Principles of programming

languages (POPL ’78). ACM, 241–254.
REKERS, J. AND KOORN, W. 1991. Substring parsing for arbitrary context-free grammars. SIGPLAN Not. 26, 5, 59–66.
SALOMON, D. AND CORMACK, G. 1995. The disambiguation and scannerless parsing of complete character-level grammars

for programming languages. Tech. rep., TR 95/06, Dept. of Comp. Sci., University of Manitoba, Winnipeg, Canada.
SALOMON, D. J. AND CORMACK, G. V. 1989. Scannerless NSLR(1) parsing of programming languages. SIGPLAN

Not. 24, 7, 170–178.
SAUNDERS, S., FIELDS, D. K., AND BELAYEV, E. 2006. IntelliJ IDEA in Action. Manning.
SCHMITZ, S. 2006. Modular syntax demands verification. Tech. Rep. I3S/RR-2006-32-FR, Laboratoire I3S, Université de

Nice-Sophia Antipolis, France. oct.
SCHWERDFEGER, A. C. AND VAN WYK, E. R. 2009. Verifiable composition of deterministic grammars. SIGPLAN

Not. 44, 6, 199–210.
SWIERSTRA, S. D. AND DUPONCHEEL, L. 1996. Deterministic, error-correcting combinator parsers. In Advanced Func-

tional Programming, Second International School, J. Launchbury et al., Eds. LNCS Series, vol. 1129. Springer, 184–
207.

SYNYTSKYY, N., CORDY, J., AND DEAN, T. 2003. Robust multilingual parsing using island grammars. In Proceedings of
the 2003 conference of the Centre for Advanced Studies on Collaborative research. IBM Press, 266–278.

TAI, K.-C. 1978. Syntactic error correction in programming languages. IEEE Trans. Software Eng. 4, 5, 414–425.
TOMITA, M. 1988. Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Vol. 14. Kluwer Aca-

demic Publishers.
VALKERING, R. 2007. Syntax error handling in scannerless generalized LR parsers. M.S. thesis, University of Amsterdam.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

44 TUD-SERG-2012-021

Natural and Flexible Error Recovery for Generated Modular Language Environments A:45

VAN DEN BRAND, M., SCHEERDER, J., VINJU, J. J., AND VISSER, E. 2002. Disambiguation filters for scannerless general-
ized LR parsers. In Compiler Construction, 11th International Conference, CC 2002, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, R. N.
Horspool, Ed. Lecture Notes in Computer Science Series, vol. 2304. Springer, 143–158.

VAN DEN BRAND, M. G. J., BRUNTINK, M., ECONOMOPOULOS, G. R., DE JONG, H. A., KLINT, P., KOOIKER, T.,
VAN DER STORM, T., AND VINJU, J. J. 2007. Using the Meta-Environment for maintenance and renovation. In The
European Conference on Software Maintenance and Reengineering (CSMR’07). IEEE Computer Society, 331–332.

VAN DEN BRAND, M. G. J., HEERING, J., KLINT, P., AND OLIVIER, P. A. 2002. Compiling language definitions: the
ASF+SDF compiler. ACM Trans. Program. Lang. Syst. 24, 4, 334–368.

VAN DEURSEN, A. AND KUIPERS, T. 1999. Building documentation generators. In IEEE International Conference on
Software Maintenance (ICSM ’99). IEEE Computer Society, 40.

VISSER, E. 1997a. A case study in optimizing parsing schemata by disambiguation filters. In International Workshop on
Parsing Technology (IWPT 1997). Massachusetts Institute of Technology, Boston, USA, 210–224.

VISSER, E. 1997b. Scannerless generalized-LR parsing. Tech. Rep. P9707, Programming Research Group, University of
Amsterdam. July.

VISSER, E. 1997c. Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam.
VISSER, E. 2002. Meta-programming with concrete object syntax. In Generative Programming and Component Engineer-

ing, ACM SIGPLAN/SIGSOFT Conference, GPCE 2002, Pittsburgh, PA, USA, October 6-8, 2002, Proceedings, D. S.
Batory, C. Consel, and W. Taha, Eds. Lecture Notes in Computer Science Series, vol. 2487. Springer, 299–315.

WADDINGTON, D. AND YAO, B. 2007. High-fidelity C/C++ code transformation. Sci. Comput. Program. 68, 2, 64–78.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

SERG Natural and Flexible Error Recovery for Generated Modular Language Environments

TUD-SERG-2012-021 45

Natural and Flexible Error Recovery for Generated Modular Language Environments SERG

46 TUD-SERG-2012-021

TUD-SERG-2012-021
ISSN 1872-5392 SERG

