
The Second Rewrite Engines Competition

Francisco Durán,a Manuel Roldán,a Emilie Balland,f

Mark van den Brand,b Steven Eker,c Karl Trygve Kalleberg,d

Lennart C. L. Kats,e Pierre-Etienne Moreau,f

Ruslan Schevchenko,g and Eelco Vissere

a Dpt. de Lenguajes y Ciencias de la Computación
Universidad de Málaga, Málaga, Spain

b Department of Mathematics and Computer Science
Eindhoven University of Technology, Eindhoven, The Netherlands

c Computer Science Laboratory
SRI International, Menlo Park, CA, USA

d University of Bergen, Bergen, Norway
e Department of Software Technology

Delft University of Technology, The Netherlands

f Centre de recherche INRIA Nancy - Grand Est
Villers-lès-Nancy Cedex, France
g Institute of Software Systems

National Academy of Sciences of Ukraine, Kiev, Ukraine

Abstract

The Second Rewrite Engines Competition (REC) was celebrated as part of the 7th Workshop on Rewriting
Logic and its Applications (WRLA 2008). In this edition of the competition participated five systems,
namely ASF+SDF, Maude, Stratego/XT, TermWare, and Tom. We explain here how the competition was
organized and conducted, and present its main results and conclusions.

Keywords: Rewriting Systems, Rewriting Competition, ASF+SDF, Maude, Stratego/XT, TermWare,
Tom

1 Introduction

Term rewriting is a powerful programming paradigm, with applications in many dif-
ferent areas, including functional programming, computer algebra, symbolic com-
putation, theorem proving, etc. It has been shown to be specially useful in the
definition of programming languages, giving semantics to them, and in the genera-
tion, analysis, and transformation of programs.

These application areas are quite different, and many different researchers have
been working on them following different approaches, and making different uses

Electronic Notes in Theoretical Computer Science 238 (2009) 281–291

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.05.025

http://www.elsevier.com/locate/entcs

of term rewriting engines. Thus, we may find different formalisms, languages, and
engines giving support and implementing term rewriting. The First Rewrite Engines
Competition [5] was organized with the belief that both rewrite engines users and
developers would benefit of such a competition. Users could make a better selection
of which engine to use for each particular application, and developers would know
how their tool compare to others, would find new challenges, and would gain a
better understanding of their ‘competitors’. Thus, the whole community would
benefit from it.

The main goal of the First Rewrite Engines Competition was to explore the
viability of such competition, and to evaluate the interest from the community in
it. They started rolling the ball, and given the interest shown we decided to go on. In
the second edition we have gathered more systems and a bigger set of problems. We
will present in this paper its main results, some conclusions and future challenges.

The first competition focused on efficiency, specifically speed, memory manage-
ment and built-ins use. There were only two participants, ASF+SDF, represented
by Mark van den Brand, and Maude, represented by Steven Eker. For the competi-
tion, a number of test examples were compiled, all of them using features supported
by both systems. The examples were written in a mathematical and intuitive no-
tation, and then translated, by hand, by an independent researcher (the developers
helped and revised the specifications to make sure that the best code was written
for each of the experiments).

The Second Rewrite Engines Competition was celebrated in 2008, right before
the 7th International Workshop on Rewriting Logic and its Applications (WRLA
2008), where its results were presented. The competition was organized by Francisco
Durán, who invited many of the existing rewriting engines developers to partici-
pate. Five of them accepted the invitation: ASF+SDF [8,7], represented by Mark
van den Brand; Maude [3,4], represented by Francisco Durán and Steven Eker;
Stratego/XT [9,2], represented by Lennart Kats, Karl Trygve Kalleberg and Eelco
Visser; TermWare [6], represented by Ruslan Shevchenko; and Tom [1], represented
by Pierre-Etienne Moreau and Emilie Balland.

2 On the organization

Once we had settled on the selection of engines, we opened a discussion on the way
the competition should take place. As in the first edition, the participating systems
were hard to compare. We had compilers and interpreters, we had general purpose
engines and others more specific, ... ASF+SDF is very good at parsing; ASF+SDF,
Stratego, and Tom are very good at program transformation; Maude is good at
rewriting modulo and has a powerful formal environment; Tom is an extension of
Java, and TermWare is a rule processing engine intended for embedding into Java
applications; etc.

In this discussion, some interesting ideas were proposed. We nailed down some
of them, others will have to wait for future editions. With such a wide range of
systems it did not make sense to go for the intersection of the capabilities of the

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291282

systems. Instead, we decided to go for a wider range of problems, and split these
in several categories. Each of the systems would participate in those categories it
supported.

We selected a bunch of tiny and small problems, organized in four categories (un-
conditional rewriting, conditional rewriting, rewriting modulo, and context-sensitive
rewriting/rewriting with local strategies). The various categories include many clas-
sical rewriting problems for their class of rewriting systems, e.g.: the trs category
includes computation of fibonacci and factorial numbers; the crts category includes
Towers of Hanoi and merge/quick/bubblesort; the modulo category includes spec-
ifications of a 3-value logic and a permutations calculation; and the cs category
includes the Sieve of Eratosthenes. Most of these tests were used in the first com-
petition.

One of our goals was to minimize the effort required in participating in the
competition. We were all busy people, and we knew that asking for a big effort was
a bad idea. And looking for a graduate student to do the coding, as in the first
competition, would not work either. Writing all the tests in five different systems
was too much to ask. Everything would be much simpler if we had a common
language supported by all the systems. But this was not the case.

One suggested approach was to use non-trivial examples. Small programs or
even complex problems, like a small theorem prover, an exploration of a search
space, a transformation of XML (or a tree), etc. It was not clear though whether
this would evaluate the systems or the application developers. Time was also a
major concern.

Given the capabilities of some of the engines involved in the definition of lan-
guages and transformations, we came up with the idea to define a very simple
rewriting language, which we called REC, in which all the problems were written.
Then, as an additional, mid-size problem in the competition, we proposed writing
programs transforming the problems in this REC syntax to the syntax of the cor-
responding tools. Once we have this program running, handling the other small
programs should be simple. For those systems in which this was not easily doable,
we still have the possibility of writing scripts or programs in other languages to get
the codes to execute. Of course, we always have the option of doing it by hand. In
fact, we wanted to have the option of providing alternative versions of the specifica-
tions for those cases in which an optimized version was possible. The REC language
and the problems proposed are relatively simple, and do not assume any built-in
or other features that could improve the specifications, like fancy syntactic facil-
ities, memoization, default rules for handling untreated cases, etc. An optimized
version of the problems, using any advanced feature provided by a system, could
additionally be provided.

Thus, the competition was set up as follows:

• The problem specifications and the tests to be evaluated are specified using the
REC language.

• Each specification is in a separate file, with the tests to be run on it after it.

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291 283

• For each problem, we expect two resulting programs, one generated automatically
and one optimized by hand.

• There should be some way of running all the tests and obtaining all the results
in a file. Each of the systems would provide instructions on how to run them.

As one can see, these rules are quite vague, and there is a lot of processing and
result gathering work to be done. Automation of these task is something to improve
in future editions of the competition, but given the differences between the systems
and the restrictions in some of them, we decided to do it like this.

The five systems were installed in a 1GHz/1GB linux machine. All the tests were
executed and the results were collected. See Section 4 for details on the results. The
installation of the systems was done by M. Roldán, who also ran most of the tests.
P.-E. Moreau provided an inestimable help in a key moment.

3 The REC language

A very simple rewriting language, REC, was defined as a common language in which
to write the problems, and tests on them. Figure 1 includes a BNF description of
the syntax of the language. It is many-sorted, does not have any built-ins, uses
prefix syntax, does not support overloading, allows conditional rules, and includes
syntax for assoc, comm, id, and strat attributes a la OBJ.

Figure 2 shows a specification of the bubble sort algorithm in the REC syntax
together with three rewriting commands on it. Notice that the list of the second
command has been abbreviated for space reasons.

Each of the participants was asked to build a program transforming the problems
in this REC syntax to the language of their corresponding tools. However, not all of
them were able to make it. Only the Maude, Stratego/XT and Tom representatives
provided the translators for their systems. The lack of time was with no doubt
responsible for not having translators for the others. We are sure that it can be
done, and that with some more time it would have been. Next time perhaps.

We thought that by comparing the translators provided, we could draw con-
clusions about their complexity, development time, and efficiency doing the trans-
formations. However, the approaches followed in Maude, Stratego/XT and Tom to
implement the REC translators were very different. While in Maude a programming
environment was built, able to read REC programs and commands and give outputs,
Stratego/XT and Tom representatives built programs that transformed the original
programs and commands, and were later loaded and executed. As such, we were
not able to draw such conclusions from the translators themselves: the translators
were implemented by experts in each of the systems, in separated locations, and
without a clear previous criterion. However, we must say that the facilities provided
by the three systems, for this kind of applications, is quite good, and that the de-
velopment times were small. Regarding parsing, we must say that ASF+SDF and
Stratego/XT are very good at defining syntax of languages, and Stratego/XT did
a very good job in the competition. Tom and Maude also, although they presented
a few limitations at the lexical level:

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291284

〈spec 〉 ::= REC-SPEC 〈id 〉
[SORTS 〈idlist 〉]
[VARS 〈vardecllist 〉]
[OPS 〈opdecllist 〉]
[RULES 〈rulelist 〉]

END-SPEC
〈idlist 〉 ::= 〈id 〉 〈idlist 〉 | ε
〈vardecllist 〉 ::= 〈idlist 〉 : 〈id 〉 〈vardecllist 〉 | ε
〈opdecllist 〉 ::= 〈opdecl 〉 〈opdecllist 〉 | ε
〈opdecl 〉 ::= op 〈id 〉 : 〈idlist 〉 -> 〈id 〉

| op 〈id 〉 : 〈idlist 〉 -> 〈id 〉 〈opattrlist 〉
〈opattrlist 〉 ::= 〈opattr 〉 〈opattrlist 〉 | ε
〈opattr 〉 ::= assoc | comm | id(〈term 〉) | strat(〈intlist 〉)
〈rulelist 〉 ::= 〈rule 〉 〈ruleslist 〉 | ε
〈rule 〉 ::= 〈term 〉 -> 〈term 〉

| 〈term 〉 -> 〈term 〉 if 〈condlist 〉
〈condlist 〉 ::= 〈cond 〉 | 〈cond 〉 , 〈condlist 〉
〈cond 〉 ::= 〈term 〉 -><- 〈term 〉 % ==

| 〈term 〉 ->/<- 〈term 〉 % =/=
〈term 〉 ::= 〈id 〉 | 〈id 〉 () | 〈id 〉 (〈termlist 〉)
〈termlist 〉 ::= 〈term 〉 | 〈term 〉 , 〈termlist 〉
〈intlist 〉 ::= 〈int 〉 〈intlist 〉 | ε

〈command 〉 ::= get normal form for: 〈term 〉
| check the confluence of: 〈term 〉 -><- 〈term 〉

〈id〉 are non-empty sequences of any characters except ‘ ’, ‘(’, ‘)’, ‘{’, ‘}’,
‘"’ and ‘,’; and excluding ‘:’, ‘->’, ‘-><-’, ‘->/<-’, ‘if’, and keywords
REC-SPEC, SORTS, VARS, OPS, RULES, and END-SPEC.
〈int〉 are non-empty sequences of digits.
Comments are given using ‘%’. All the text written in the a line after a
‘%’ is discarded.

Fig. 1. The REC language.

• Tom cannot handle symbols like &, +, ...
• For Maude, REC modules and commands must be enclosed in parentheses, and

comments must be given as in Maude.

4 The results from the competition

We present a selection of the results in this paper, and refer to the web site of
the Second Rewrite Engines Competition, at http://maude.lcc.uma.es/REC, for
further details. All the files and results of the competition are available in this
web site, where one can find a table that includes, for each of the problems, the
specification and the tests run on it in REC syntax, and the corresponding problems
in the syntax of each the participant systems, both in the automatically generated
and manually generated/optimized versions, together with the times consumed in
their computation and the solutions given.

Tables 1, 2, 3, and 4 show the times (in milliseconds) consumed by the five
systems in two of the four categories, namely unconditional term rewrite systems
(TRS) and conditional TRS (CTRS). Since Maude was the only system in the
competition supporting rewriting modulo axioms and local strategies, the results
for these categories are not included here. They are available at the competition’s
web site.

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291 285

http://maude.lcc.uma.es/REC

REC-SPEC BubbleSort
SORTS
Bool Nat NatList

OPS
true : -> Bool
false : -> Bool
0 : -> Nat % zero
s : Nat -> Nat % succesor
lt : Nat Nat -> Bool % less than
nil : -> NatList
cons : Nat NatList -> NatList
plus : Nat Nat -> Nat
times : Nat Nat -> Nat
rev : Nat -> NatList
fact : Nat -> Nat

VARS
N M : Nat
L : NatList

RULES
lt(0, s(N)) -> true
lt(s(N), 0) -> false
lt(N, N) -> false
lt(s(N), s(M)) -> lt(N, M)
plus(0, N) -> N
plus(s(N), M) -> s(plus(N, M))
times(0, N) -> 0
times(s(N), M) -> plus(M, times(N, M))
fact(0) -> s(0)
fact(s(N)) -> times(s(N), fact(N))
rev(s(N)) -> cons(s(N), rev(N))
rev(0) -> cons(0, nil)
cons(N, cons(M, L)) -> cons(M, cons(N, L))

if lt(M, N) -><- true
END-SPEC

get normal form for:
rev(s(0)))))))))))))))))))))

get normal form for:
cons(s(0), cons(s(s(0)), cons(s(s(s(0))), ... a huge list ...)))

get normal form for:
rev(fact(s(s(s(s(s(0)))))))

Fig. 2. REC specification of the bubblesort algorithm and some rewriting commands on it.

Tables 1 and 3 show the results for the REC problems automatically transformed
by each of the tools. As said above, ASF+SDF and TermWare did not provide
translators, and therefore they do not appear in these tables. Tables 2 and 4 show
the results for the manually generated versions. ASF+SDF did not provide so-
lutions for all the problems; the missing specifications are missionaries, quicksort,
and mergesort, for which a ‘—’ is given. These specifications where provided after
the competition, but due to technical problems they could not be included in this
edition.

Although the Stratego/XT representatives did not optimize their specifications,
the results obtained for the automatically generated ones are included in Tables 2
and 4; one may expect that these numbers could be improved in some cases.

In those cases in which the computation terminated abruptly or did not termi-
nate in a reasonable amount of time (15 minutes) the place in the table shows a
‘—’. In particular, none of the systems were able to complete the second factorial
test in the amounted time.

One should take the specificity of the five systems into account when evaluating
the results in these tables. Between the competing systems we can find compilers
and interpreters, traditional rewriting systems and Java-embedded rewriting sys-

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291286

Maude Stratego/XT Tom

test 1 7 0 177

test 2 5402 2450 3253

ASF+SDF test 3 7 0 231

benchmark test 4 7109 3330 3400

test 5 11 651320 —

test 6 17609 — —

factorial test 1 1 — —

test 2 — — —

fibonacci test 1 1 0 17

garbage test 1 0 — 19

collection test 2 0 0 0

reverse test 1 1 770 27

Table 1
Times (in milliseconds) for the unconditional term rewriting systems, automatically generated from the

REC specifications.

tems, general-purpose systems and specific systems, etc. It is commonly accepted
that the performance difference between a compiler and an interpreter may be in an
order of magnitude, but it is not easy to measure the other circumstances. More-
over, although we have tried to consider problems not handled by all the systems,
so that some of the capabilities not in the intersection could be shown, much more
needs to be done. We have shown some of the capabilities for defining programming
languages, and for transforming their programs. We cannot give any conclusion on
this other than what has already been said in Section 3.

In [5], some remarks were given by S. Eker and M. van den Brand explaining
the results of Maude and ASF+SDF in the first engines competition. Taking into
consideration the increased scope of the current edition of the competition, and the
heterogeneity of the systems involved, we cannot offer an in-depth analysis of all
the results. Instead, we limit ourselves to highlight some of the them.

The ASF+SDF benchmark (Tables 1 and 2) is a benchmark proposed in [7] to
study resource usage for brute-force rewriting (no built-ins, no strategies). We can
see how ASF+SDF outperforms all the other systems, and that the compilers of
Stratego/XT and Tom also run much faster that the interpreters.

Notice however that the ASF+SDF benchmark was designed specifically for
the ASF+SDF system, what is a bit unfair for the other systems. Stratego, for
example, focuses on user-defined strategies to control rewrite rules. In the programs
generated for the benchmarks, a fixed evaluation strategy is used instead, which is

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291 287

ASF+SDF Maude Stratego/XT TermWare Tom

test 1 40 7 0 102 108

test 2 430 5402 2450 86712 3236

ASF+SDF test 3 0 7 0 127 17

benchmark test 4 420 7109 3330 178269 3471

test 5 30 1 651320 154 16

test 6 490 17609 — 150614 3795

factorial test 1 0 0 — — —

test 2 — 0 — — —

fibonacci test 1 — 0 0 4 17

garbage test 1 — 0 — 2 19

collection test 2 — 0 0 0 0

reverse test 1 0 0 770 1 18

Table 2
Times (in milliseconds) for the unconditional term rewriting systems, manually generated or optimized

from the REC specifications (no optimization was provided by Stratego/XT, the values from Table 1 are
included here to simplify their comparison).

rare in regular Stratego programs, and not something it is optimized for. This may
explain the results of tests 4 and up in the ASF+SDF benchmark. This may also
be the case for the sorting algorithms of Table 3. For Stratego, this is a somewhat
unnatural way of expressing these problems. A hand-coded solution would likely be
very dissimilar to the presented problem specification, making it hard to compare
it with solutions of other systems in a meaningful way. This is the reason why they
chose to focus on a purely translator-based approach.

Although the Tom system fails at the automatically generated version of the
ASF+SDF benchmark for tests 5 and 6 (see Table 1), the optimizations introduced
allows it to handle them (see Table 2), and quite efficiently, we must say.

Since we do not have ASF+SDF versions of the mergesort and quicksort prob-
lems, and the Stratego/XT developers did not optimize their codes, no conclusion
can be given from the results for these problems, but notice how the optimizations
introduced in the Maude code allows it to outperform the other systems. This
was not the case when considering the automatically generated ones, were the Tom
compiler is much faster. The Stratego/XT system seems to have some problems
handling these tests.

As to Maude’s performance, there were no big surprises. In an interpreter, un-
used features cannot be optimized away an so trade offs have to be made, whether
to optimize the interpretation code for the most common case or whether to opti-
mize for a particular feature. In the case of the Maude interpreter, unconditional

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291288

Maude Stratego/XT Tom

test 1 4 0 35

bubblesort test 2 471 140 218

test 3 319 140 184

fibfree test 1 28 20 70

hanoi test 1 1 — 44

test 1 1 0 58

mergesort test 2 50 — 26

test 3 23599 — 614

missionaries test 1 40 20 102

test 1 192 0 18

oddeven test 2 7 0 235

test 3 — 0 1

test 1 2 — 30

quicksort test 2 113 — 64

test 3 495579 — 11397

Table 3
Times (in milliseconds) for the conditional term rewriting systems, automatically generated from the REC

specifications.

rewriting, particularly modulo, is highly optimized, at the expense of having a lot of
state that is distributed over multiple internal data structures. In order to evaluate
a condition this state must be saved before the condition is evaluated and restored
afterwards, which makes conditional rewriting very expensive. This can be seen in
the quicksort example, where a naive translation makes use of conditional equa-
tions whereas a translation by a human expert uses the builtin if_then_else_fi
operator, which is very cheap.

5 Conclusions

As in the First Rewrite Engines Competition, we believe that both rewrite engines
users and developers have benefited from this second edition of the competition.
Although in this second edition we took a great step forward, gathering more sys-
tems, proposing the REC language and providing translators for some of the sys-
tems, there is still a lot to be done. In any case, our main goals were satisfied:
we got to know each of the systems better, some of the strengths and weaknesses
of the engines were shown, and we got more motivation to go on working on our

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291 289

ASF+SDF Maude Stratego/XT TermWare Tom

test 1 0 4 0 417 35

bubblesort test 2 0 471 140 67 218

test 3 60 319 140 — 184

fibfree test 1 — 28 20 464 65

hanoi test 1 0 1 — 8 45

test 1 — 0 0 62 101

mergesort test 2 — 0 — 1228 30

test 3 — 11 — — 600

missionaries test 1 — 7 20 358 102

test 1 0 0 0 2 21

oddeven test 2 0 0 0 0 235

test 3 0 0 0 0 1

test 1 — 0 — 5 30

quicksort test 2 — 6 — 22 64

test 3 — 859 — 2782 11397

Table 4
Times (in milliseconds) for the conditional term rewriting systems, manually generated or optimized from

the REC specifications (no optimization was provided by Stratego/XT, the values from Table 3 are
included here to simplify their comparison).

respective systems. In addition to these results, the five systems were presented in
a special session of WRLA’08, what also helped to give some additional visibility
to the systems in the competition, and to the competition itself.

As a conclusion, we can say that we have very fast rewrite engines out there.
They are very specific, but very good at what they were conceived for.

Compilers are more efficient in the problems they support. It would be good to
see how they compare doing AC matching, or how new techniques are developed so
that systems like Maude can go compiled.

In future editions of the competitions, we would like to get a better idea of:

• memory usage, other than some of the engines crashed for some of the problems;
• development times, for the REC translators, for example; how to measure this?
• correctness, notice that we were assuming that the outputs given by the engines

was correct; checking the results given should not be complex,
• big problems, what about scalability?

And one wish for the competition: More automatization is required! For entering

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291290

the programs, without requiring later optimization, time capture, results table gen-
eration, etc. During the course of the weeks before the competition was presented,
we came up with extensions to the REC language to automatically validate tests,
and worked on automated building and testing. This process could be improved in
the future.

Acknowledgement

We would like to thank Grigore Roşu, as organizer of WRLA 2008 and the First
Rewrite Engines Competition, for his help and support. His experience and com-
ments were very useful. And, of course, we have to thank all the people who has
participated in the development of all the rewrite engines in the competition.

References

[1] Balland, E., P. Brauner, R. Kopetz, P.-E. Moreau and A. Reilles, Tom: Piggybacking rewriting on java,
in: F. Baader, editor, Term Rewriting and Applications, 18th International Conference, RTA 2007,
Paris, France, June 26-28, 2007, Proceedings, Lecture Notes in Computer Science 4533 (2007), pp.
36–47.

[2] Bravenboer, M., K. T. Kalleberg, R. Vermaas and E. Visser, Stratego/xt 0.17. a language and toolset
for program transformation, Science of Computer Programming 72 (2008), pp. 52–70.

[3] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and J. Quesada, Maude:
Specification and programming in rewriting logic, Theoretical Computer Science 285 (2002), pp. 187–
243.

[4] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and C. Talcott, “All About Maude
- A High-Performance Logical Framework,” Lecture Notes in Computer Science 4350, Springer, 2007.

[5] Denker, G., C. Talcott, G. Rosu, M. van den Brand, S. Eker and T. F. Şerbănuţă, Rewriting logic
systems, ENTCS 176 (2007), pp. 233–247.

[6] Shevchenko, R. and A. Doroshenko, A rewriting framework for rule-based programming dynamic
applications, Fundamenta Informaticae 72 (2006), pp. 95–108.

[7] van den Brand, M. G. J., J. Heering, P. Klint and P. A. Olivier, Compiling language definitions: the
ASF+SDF compiler, ACM Transactions on Programming Languages and Systems 24 (2002), pp. 334–
368.

[8] van den Brand, M. G. J., A. van Deursen, J. Heering, H. Jong, M. Jonge, T. Kuipers, P. Klint, L. Moonen,
P. A. Olivier, J. Scheerder, J. Vinju, E. Visser and J. Visser, The ASF+SDF Meta-Environment: a
Component-Based Language Development Environment, in: R. Wilhelm, editor, CC’01, LNCS 2027
(2001), pp. 365–370.

[9] Visser, E., Stratego: A language for program transformation based on rewriting strategies. System
description of Stratego 0.5, in: A. Middeldorp, editor, Rewriting Techniques and Applications (RTA’01),
Lecture Notes in Computer Science 2051 (2001), pp. 357–361.

F. Durán et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 281–291 291

	Introduction
	On the organization
	The REC language
	The results from the competition
	Conclusions
	Acknowledgement
	References

