
Declarative Specification of
Template-Based Textual Editors
Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser

Software Engineering Research Group
Delft University of Technology

The Netherlands
t.j.vollebregt@student.tudelft.nl

l.c.l.kats@tudelft.nl
visser@acm.org

Abstract
Syntax discoverability has been a crucial advantage of structure editors

for new users of a language. Despite this advantage, structure editors have
not been widely adopted. Based on immediate parsing and analyses, mod-
ern textual code editors are also increasingly syntax-aware: structure and
textual editors are converging into a new editing paradigm that combines
text and templates. Current text-based language workbenches require re-
dundant specification of the ingredients for a template-based editor, which
is detrimental to the quality of syntactic completion, as consistency and
completeness of the definition cannot be guaranteed.

In this paper we describe the design and implementation of a speci-
fication language for syntax definition based on templates. It unifies the
specification of parsers, unparsers and template-based editors. We evalu-
ate the template language by application to two domain-specific languages
used for tax benefits and mobile applications.

1 Introduction
Language-aware structure editors provide a template-based paradigm for editing
programs. They allow composing programs by selecting a template and filling in
the placeholders, which can again be extended using templates. A crucial advan-
tage of structure editors is syntax discoverability, helping new users to learn the
language by presenting possible syntactic completions in a menu. Structure ed-
itors can be automatically generated from a syntax definition. Notable projects
aiming at automatic generation of structure editors include MPS [23] and the
Intentional Domain Workbench [19]. Structure editors can be used for general-
purpose languages or for domain-specific languages (DSLs). A modern example
of the former is the structure editor in MPS [23], for extensible languages based
on Java. An example of the latter category is the DSL for modeling tax-benefit
rules developed by IT services company Capgemini using the Cheetah system.
Cheetah’s facilities for discoverability and the use of templates are particularly
effective to aid a small audience of domain expert programmers manage the
verbose syntax based on legal texts.

1

mailto:t.j.vollebregt@student.tudelft.nl
mailto:l.c.l.kats@tudelft.nl
mailto:visser@acm.org

Despite their good support for discoverability, structure editors have not
been widely adopted. Pure structure editors tend to introduce an increased
learning curve for basic editing operations. For example, they only support
copy-pasting operations that maintain well-formedness of the tree and require
small, yet non-trivial “refactoring” operations for editing existing code, e.g. when
converting an if statement to an if-else statement. They also lack integration
with other tools and expose the user to vendor lock-in. Transferring code across
tools requires a shared representation that is generally not available. With
software engineering tools such as issue trackers, forums, search, and version
control being based on text, a textual representation is preferable, but requires
the use of a parser and a parseable language syntax. This forces tools based
on structure editors to find new solutions to problems long solved in the text
domain.

To alleviate the problems of structure editors, there has been a long history
of hybrid structure editors that introduce textual editing features to structure
editors [24, 18, 11]. Conversely, modern textual code editors such as those
in Eclipse and Visual Studio are increasingly syntax-aware, based on parsers
that run while a program is edited. Over time, they have acquired features
ranging from code folding to syntactic completions allowing programmers to fill
in textual templates. Indeed, structure and textual editors are converging into
a new editing paradigm that combines text and templates.

In order to provide the advantages of text editing to the tax-benefit DSL
of Capgemini, we converted the language from the Cheetah system, which uses
a structure editor, to the parser-based Spoofax language workbench [10]. We
quickly realized that it would be impossible for a user to write new models
in such a verbose language in the textual editor of Spoofax, without accurate
and complete syntax discovery. In syntax-aware text editors this discovery is
provided in the form of syntactic completion. Accurate and complete syntactic
completion depends critically on two features of a language workbench: first,
the syntactic completion proposals presented to the user must be relevant and
complete, and second, it must be feasible to create and maintain the specification
necessary to make the editor aware of these completion proposals.

Current text-based language workbenches require redundant specification of
the ingredients for a template-based editor, i.e. concrete syntax, abstract syn-
tax, completion templates, and pretty-print rules, which is detrimental to the
quality of syntactic completion in syntax-aware editors. Evolution of the lan-
guage requires maintenance of all ingredients in order to maintain completeness
and consistency. It is tedious and therefore easy to make mistakes while adding
or adapting a completion template for each new or modified language construct.

In this paper, we present the design of a template-based syntax definition
language1 that unifies the specification of parsers, unparsers, and template-
based editors in order to support the efficient construction of template-based
editing facilities in textual editors. In order to improve the runtime support for
these template-based editing facilities, we describe an approach to compute the
set of applicable templates at the location of the cursor.

We have implemented the template language in an extension of the Spoofax
language workbench [10] and validated the approach by applying the techniques
in two mature DSLs.

1http://strategoxt.org/Spoofax/TemplateLanguage

2

http://strategoxt.org/Spoofax/TemplateLanguage

(a) Completion is triggered: a pop-up menu
shows the available completion proposals.

(b) Completion proposals are filtered by typ-
ing the fun prefix into the editor.

(c) The type of function argument is selected. (d) The circle is round: completion is trig-
gered for the body of the function.

Figure 1: Template-oriented editing in a textual editor. The templates are editable as
text and mark placeholders with rectangles, providing context menus to assign their
values.

We proceed as follows. In the next section, we provide background on lan-
guage and editor implementation. In Section 3 we describe the design of a
template-based specification language for syntax. We then describe how to
generate template-based editors from such a language in Section 4 and how
template-based editing can be supported in Section 5. In Section 6 we evaluate
the approach. We discuss related work in Section 7 and present our conclusion
in Section 8.

2 Background
Modern integrated development environments (IDEs) contribute significantly to
the productivity of software developers and the adoption of new languages. The
development of a complete IDE from scratch is a significant undertaking. As
an alternative, language workbenches [6, 10, 23] can generate a complete IDE
plug-in and a compiler from high-level language definitions.

Key to the generation of full-featured editors is the use of an abstract repre-
sentation of programs that is maintained as programs are edited. The abstract
representation is used for editor services, i.e. facilities such as an outline of the
program and reference resolving to navigate to the definition sites of identifiers.
Some of these facilities can be implemented directly at the level of concrete
syntax, using regular expressions or other forms of pattern matching, but a
structured, abstract representation ensures a uniform interface for editor ser-
vices.

A central part of the definition of a language is the mapping between the
concrete syntax of a language and its abstract representation. In structure
editors, the mapping is defined as a projection from abstract representation to
concrete syntax. In textual editors, the mapping is defined through a parser that
constructs the abstract representation from a textual concrete syntax. Syntax-
aware textual editors also apply a reverse mapping in editor services such as

3

context-free syntax
"module" ID Definition* -> Start {cons("Module")}
"entity" ID "{" Property* "}" -> Definition {cons("Entity")}
ID ":" Type -> Property {cons("Property")}
ID -> Type {cons("Type")}

(a) Grammar of the language, in SDF

completion template : Start = "module␣" <m> (blank)
completion template : Definition = "entity␣" <e> "␣{}" (blank)
completion template : Property = <x> "␣:␣" <T> (blank)

(b) Completion templates, for syntactic completion, in the EditorService language

[Module -- V[H[KW["module"] _1] _2],
Entity -- V is=2 [H[KW["entity"] _1 KW["{"]] _2] KW["}"],
Property -- H[_1 KW[":"] _2]

]

(c) Pretty printer specification, in the PP language

Figure 2: Redundant concrete syntax specification in Spoofax

content completion, pretty printing, code formatting, and refactoring. In par-
ticular, modern syntax-aware textual editors support generation of code snip-
pets via textual templates, triggered in a context-sensitive fashion by means of
a content completion user interface. For example, Figure 1 demonstrates how a
simple function is created using content completion.

In order to support the various applications of syntax definition, the different
aspects of parsing, unparsing, formatting, and completion templates are often
specified separately. For instance, Figure 2 shows an example of concrete syntax
specification in Spoofax. Figure 2a defines a grammar, specified in SDF [8, 22],
which is used to generate a parse table. Figure 2b defines completion templates
that include layout and placeholder text. Figure 2c defines pretty printing
rules, used for formatting existing and refactored or otherwise transformed code.
Without going into the details of the three examples, it is immediately obvious
that there is redundancy in these specifications.

Redundancy in syntax definitions is a common issue in tools to create syntax-
aware textual editors, as we discuss in Section 7. It poses a maintenance problem
as the language evolves: completion templates and pretty printer specification
may lag behind modifications to the grammar of the language, hampering their
completeness. One solution for the redundancy is to generate a default pretty
printer from the syntax definition as applied for Spoofax in [10], and possibly
generate default completion templates as well. Unfortunately, such a generative
approach means that manually customized templates and formatting rules have
to be combined with generated rules, which means it does not address the
maintenance problem of these separate specifications.

3 Template-Based Syntax Definition
In this section we introduce a new syntax definition language based on templates
as those found in template engines such as StringTemplate [14]. Additionally,
we base the design of auxiliary features of the language, such as priority specifi-
cation and lexical syntax, on that of SDF [8, 22]. The aim of the language is to

4

eliminate the redundancy between different syntactic specifications, by combin-
ing concrete syntax, abstract syntax, formatting, whitespace, and placeholder
names. We argue that through the use of templates, the language is rich in
information yet elegant and simple.

Basic template-based syntax definitions consist of template productions that
correspond to production rules in a grammar. They have the following form:

s.label = <
template

>

where s is the name of the symbol being defined, label is its constructor label
used for the abstract representation, and template is a template that may include
concrete syntax, references to other symbols (placeholders), and layout. Both
the template and its placeholders are enclosed by <. . . > brackets.

As a first example, the following template productions define basic arithmetic
expressions:

templates
Exp.Num = <<INT>>
Exp.Plus = <<Exp> + <Exp>>
Exp.Times = <<Exp> * <Exp>>

The first production defines a template for number literals, defining a template
for the Exp symbol based on a reference to the INT symbol. The other produc-
tions specify templates for the + and * operators. The last two templates consist
of five elements: an <Exp> placeholder, whitespace, the + or * sign, more whites-
pace, and another placeholder. Of these elements, the whitespace elements are
not considered for parser generation. Instead they are used for formatting in
a generated pretty printer and completion templates. Whitespace characters
treated this way are spaces, tabs, and newlines.

Placeholders can use the common * and + operators for repetition, and ? for
optionals. For repeated symbols with a separator symbol s, <symbol*; separator=s>
can be used. The following template productions illustrate these features,
adding function calls and definitions to the expression language.

templates
FunctionDef.Function = <

function <ID>(<ID*; separator=",␣">) = <Exp>
>
Exp.Call = <<ID>(<Exp*; separator=",␣">)>

Disambiguation Grammars can be extended with disambiguation rules and
annotations to express language characteristics such as associativity and opera-
tor precedence. In our running example, multiplication has a higher precedence
than addition. Whereas in SDF [13] priorities are specified declaratively by
copying the relevant productions and ordering them, separated by >-symbols,
we add the option of specifying priorities through references to the relevant pro-
ductions, so as to eliminate redundancy. The difference is shown in Figure 3.

Lexical Syntax A part of syntax definitions we have not discussed so far is
lexical syntax. Lexical syntax elements such as INT and ID in our expression
language, are, unlike the context-free productions we discussed so far, generally
specified using a form of regular expressions. In the abstract representation
they are usually represented as simple strings, making unparsing trivial. For

5

templates
Exp.Plus = <<Exp> + <Exp>> {left}
Exp.Times = <<Exp> * <Exp>> {left}

context-free priorities
Exp.Times >
Exp.Plus

(a) Associativity and priorities with tem-
plates and references

context-free syntax
Exp "+" Exp -> Exp {left, cons("Plus")}
Exp "*" Exp -> Exp {left, cons("Times")}

context-free priorities
Exp "*" Exp -> Exp >
Exp "+" Exp -> Exp

(b) Equivalent associativity and priorities in
SDF

Figure 3: Expression grammar

lexical syntax
ID = [A-Z] [A-Za-z0-9]*
INT = [0-9]+
LAYOUT = [\ \t\r\n]

(a) Lexical productions

lexical restrictions
ID -/- [A-Za-z0-9]
INT -/- [0-9]

context-free restrictions
LAYOUT? -/- [\ \t\r\n]

(b) Lexical and context-free restrictions

Figure 4: EBNF-ordered productions

consistency, lexical productions can be specified in symbol-first order, as shown
in in Figure 4a. The definition of the body of lexical productions is shared
with SDF [8, 22]. Both lexical and context-free syntax can be disambiguated
using restriction sections in SDF [13], a construct that we inherit in our syntax
specification language (Figure 4b).

The syntax of the template language is summarized in Figure 5. We proceed
with a description of the mapping from syntax templates to SDF, completion
templates, and pretty printing rules.

4 Generating Template-Based Editors
To SDF Syntax templates closely match context-free syntax in SDF. Specif-
ically, to go from a syntax template to an SDF production, all layout is dis-
carded: in SDF, there is implicit LAYOUT? between all symbols in a context-free
production. The remaining elements (literals and placeholders) are converted
in-order to their respective SDF equivalents. Layout is trimmed from the sep-
arator option of list placeholders. An example of this transformation is shown
in Figure 6.

To completion templates Completion templates in Spoofax consist of the
following components:
• A symbol that indicates the context in which the template is applicable.
• A string, which is displayed in the completion pop-up, and is used to filter

the list of proposals.
• A list of elements of the completion template. Each element is either a

string, possibly including line breaks and indentation, a placeholder, or the
special (cursor) directive. This last directive indicates the location of the
cursor after the user has cycled through all placeholders. A placeholder
consists of an initial replacement text, and an optional symbol, which is

6

Productions
Sort = <e∗> Template with elements e∗
Sort.Cons = <e∗> Template with elements e∗
Placeholders
<A> Placeholder (1)
<A?> Optional placeholder (0..1)
<A*> Repetition (0..n)
<A+> Repetition (1..n)
<A*; separator="\n"> Repetition with separator
<A; text="hi"> Placeholder with replacement text
<A; hide> Hidden from completion template
Priority specification
context-free priorities

{left: Exp.Times Exp.Over} >
{left: Exp.Plus Exp.Minus}

References to template productions

Lexical syntax
lexical syntax

ID = [A-Za-z] [A-Za-z0-9]*
EBNF-order productions in SDF

Figure 5: Summary of the template language syntax

used to display a list of syntactic completions applicable at the position
of that placeholder, as soon as the user switches to this placeholder.

• A set of annotations. The only relevant annotation in use is (blank), which
constrains the completion template to blank lines.

We do not perform a linear transformation from syntax templates to comple-
tion templates, as we did for the grammar. The reason is best illustrated with
Figure 7. For certain language elements, we may want to factor out repeated
constructs, such as the <Statement*; separator="\n"> placeholder in the example.
The user of the editor, however, should not be exposed to such implementation
details. In particular, the user should not be forced to repeatedly apply com-
pletion to fill in required parts of a language construct: those required parts
should be inserted into the program text as soon as the completion proposal for
the language construct is applied.

Therefore, we substitute the referred template for each placeholder with a
multiplicity of one and higher (<A> and <A+>), unless the placeholder refers to the
containing template. In the step expand template of the example in Figure 7,
the <MetaAnnos> and <Statements> placeholders are expanded.

The simplify template step removes placeholders with the hide option, and
processes placeholders that can generate the empty string (<A?> and <A*>). Call
those placeholders ε-placeholders. These placeholders are treated differently de-

Exp.Plus = <<Exp> + <Exp>>

⇓ generate SDF ⇓
Exp "+" Exp -> Exp {cons("Plus")}

Figure 6: Generate an SDF production from a syntax template

7

FunctionDef.Function = <
<MetaAnnos>
function <QId>(<FArg*; separator=",␣">) : <Type> {

<Statements>
}

>
MetaAnnos = <<MetaAnno*; separator="\n", hide>>
Statements = <<Statement*; separator="\n">>

⇓ expand template ⇓
FunctionDef.Function = <

<MetaAnno*; separator="\n", hide>
function <ID:QId>(<FArg*; separator=",␣">) : <ID:Type> {

<Statement*; separator="\n">
}

>

⇓ simplify template ⇓
FunctionDef.Function = <

function <ID:QId>(<:FArg>) : <ID:Type> {
(cursor)

}
>

⇓ generate completion template ⇓
completion template FunctionDef: "function␣ID()␣:␣ID␣{␣}" =

"function␣" <ID:QId> "(" <:FArg> ")␣:␣" <ID:Type>
"␣{\n\t" (cursor) "\n}" (blank)

Figure 7: Generate completion templates from syntax templates

pending on their location in the template. The (cursor) directive is substituted
for the first line that consists of a single ε-placeholder. Further instances of
ε-placeholders on a single line are ignored: we expect the user to retrigger com-
pletion when they desire to insert a template at these positions. In Figure 7,
<MetaAnno*; separator="\n", hide> is removed, and the (cursor) directive is substi-
tuted for <Statement*; separator="\n">. Remaining ε-placeholders are replaced by
an empty placeholder in the completion template that can be expanded to a sin-
gle occurrence of one of the referred templates. In Figure 7 this is demonstrated
by the substitution of <:FArg> for <FArg*; separator=",␣">.

To pretty printing rules A simple set of recursive, bottom-up pretty print-
ing rules can be generated from syntax templates. We generate these rules in
the program transformation language Stratego. It can be seen in Figure 8 that a
pretty printing rule consists of a number of components. The name of the rule,
prettyprint-Statement, is composed from the name of the symbol. The rule
matches the constructor IfThen with two arguments. The number of arguments
is equal to the number of placeholders in the syntax template.

When the rule matches, child nodes are pretty printed by (recursively) invok-
ing (other) pretty printing rules. Then, the text for all elements of the template
is concatenated, while the text for child nodes is indented by the amount the
respective placeholder is indented in the syntax template.

8

Statement.IfThen = <
if <Exp> then

<Statement*; separator="\n">
end

>

⇓ generate Stratego pretty printing rule ⇓
prettyprint-Statement:

IfThen(a, b) -> zz
with a’ := <prettyprint-Exp> a

; b’ := <map(prettyprint-Statement); separate-by(|"\n")> b
; zz := <concat-strings> ["if␣", a’, "␣then\n",

<pp-indent(|"␣␣")> b’, "\nend"]

Figure 8: Generate Stratego pretty printer from syntax templates

5 Runtime Support for Template-Based Editors
For template-based editing to be effective, only contextually relevant templates
should be shown. Pure structure editors achieve this based on the currently
selected placeholder. To achieve the same in textual editors, the editor must be
aware of the syntactic category of the text at the cursor location at any time.
The provided completions must be accurate: all applicable templates must be
included, and no inapplicable templates may be included. In this section we
describe an approach for gathering an accurate list of templates in a parser-
based editor.

Determining the syntactic category at the cursor location in a language-
agnostic fashion is not trivial. If possible, changes to generated parsers to sup-
port this facility should be provided. In addition, syntax errors need to be taken
into consideration; the editor must be able to determine what type of template
should be inserted even when a program is edited and is in a syntactically in-
correct state.

Original implementation The solution originally implemented in Spoofax
first creates a modified program text that includes a marker at the cursor loca-
tion. The marker matches the syntax for identifiers, and is unlikely to be present
anywhere else in the program text. The modified program text is then parsed,
after which the AST is searched for the marker. Spoofax infers the symbols that
should have been allowed at the position of the cursor from the token stream,
and meta data attached to AST nodes.

The interaction between the involved components is a problem with this
implementation. When the modified program text is parsed, and it has parse
errors, error recovery gets involved. Unless completion is invoked at a position
where an identifier is allowed, there will be parse errors. The error recovery
algorithm in the SGLR parser used in Spoofax attempts to get the parser back
on track by performing a minimum number of token insertions and/or removals.
As such, it may remove the marker, or insert punctuation that pushes the marker
into another language construct.

One solution is to make the parser aware of the cursor location, and report
the allowable syntactic categories at that character offset during parsing. This

9

solution is specific to SGLR, and needs to be re-implemented in every other
parser. We look for a more generic and less complex solution.

Our solution We apply a grammar generation technique that adds a pro-
duction CONTENTCOMPLETE -> X {cons("COMPLETION-X")} for every symbol X, where
CONTENTCOMPLETE is a symbol that recognizes the inserted marker text, includ-
ing surrounding identifier characters. When the program text with marker is
parsed, the marker can be parsed as every symbol allowed at its location. Be-
cause we encode the name of the symbol in the AST constructor, the editor
runtime knows all symbols allowed at the position of the marker. The set of
symbols is then used to select appropriate completion templates to display to
the user.

6 Evaluation
We investigated whether the template language is sufficiently expressive to de-
scribe the syntax of existing DSLs. The requirements are that the syntax defi-
nition generated from the syntax templates must be equivalent to the original
syntax definition. The completion templates must behave as was intended with
the design of the template language, and the pretty printer must be able to
output reasonably pretty code.

To perform the evaluations we converted the SDF grammar of the DSL into
unformatted syntax templates. These unformatted syntax templates were then
manually formatted to match the existing specification of the DSL. The syntax
definition using formatted templates was then compiled into a Spoofax editor
for the language, which we then used to try completion and to pretty print a
number of DSL programs.

6.1 A Tax-Benefit Language
We converted the tax-benefit DSL from Cheetah to the template language. The
DSL implements a temporal database [20] on top of .NET services and relational
databases, while hiding the accidental complexity of those aspects from the user.
Relevant to this evaluation is that the DSL is very verbose. It contains many
specialized statements and expressions, many of which are Dutch sentences,
with gaps where other statements or expressions can be inserted.

To acquire a syntax specification in the template language, we re-targeted
our initial conversion. The DSL models could be parsed using the template lan-
guage syntax specification without modification. Additionally, we got comple-
tion templates and a working pretty printer “for free.” The template languages
reduced the syntax definition from 2101 (only SDF) to 997 lines. This large
reduction can be attributed to the lexical restrictions the template language
automatically generates for all keywords in each syntax template, in combina-
tion with the large number of keywords in the language, and the fact that, as
a result of the conversion from Cheetah, each of the 129 language constructs
is stored in a separate file. An example of a language construct defined in the
template language, versus the same language construct defined in SDF, is shown
in Figure 9.

10

Figure 9: A Dutch if-else statement expressed in SDF (top),
and expressed in the template language (bottom)

6.2 The Mobl Mobile Web Programming Language
Mobl [9] is a DSL for the construction of mobile web applications. It features
an extensive standard library, declarative specification of user interface, static
type checking, and embedding of Javascript, CSS styling rules and HTML. We
created a clone of the syntax of the Mobl language in our template language,
using a converter in the Spoofax SDF editor. Within a few hours we formatted
the 343 unformatted syntax templates, by inserting line breaks and indentation
into 64 multi-line language constructs, and adapting layout throughout the lan-
guage using search-replace. One production had to be manually refactored to
three separate productions, because it employed the alternative operator, which
is deprecated in SDF, and (by design) not present in the template language.

After some minor fixes the syntax templates resulted in a syntax definition
that could be used to parse and pretty print all example code included with the
Mobl project, although for nested if-else statements we hit limitations with
regards to the placement of braces. Overall, the template language reduced the
combined size of the syntax specifications from 1562 lines to 1162 lines, while
delivering a complete pretty printer, and a complete set of completion templates.

The grammar of the Mobl language as specified by our template language
is slightly more permissive than the original Mobl grammar, due to keywords
that contain special characters, such as @<javascript> and @doc, which get
tokenized by the SDF generator to "@<" "javascript" ">" and "@" "doc", so that
layout is allowed between these tokens. We will have to revisit this design
decision, and consider, for example, removing the tokenization, and introducing
a zero-length space character to insert LAYOUT?, to ensure it is possible to define
such keywords in the template language.

11

Initially, syntactic completion in our evaluation was suboptimal due to the
annotations present in Mobl at the start of many language constructs. Because
the placeholder for these annotations is on a separate line, completion templates
that produce a blank line before the language construct were generated. This
behavior is likely not expected by the user, because these annotations are rarely
used in Mobl. We corrected this by introducing the hide option to suppress the
placeholders for annotations from the completion templates for many language
constructs. The templates for annotations can be invoked separately, where
desired.

Evaluation of the Runtime Support We evaluated the runtime support for
template-based editors on a sample program in the Mobl language by triggering
completion on relevant positions in the sample program. Our approach was able
to provide the editor runtime with an accurate and complete set of symbols on
each sample position. The fact that our approach minimizes the interaction
with error recovery likely explains these promising results.

7 Related Work
Unified Syntax Specifications There are a number of current syntax speci-
fication approaches that aim to unify the specification of parsing and unparsing.

Syn [3] aims to be one syntax definition language for the specification of
ASTs, lexical analysis, parsing and pretty-printing. Its notation is similar to
BNF, extended with a sublanguage for the specification of a lexical analyzer, and
operators h (horizontal composition), hv (inconsistent line breaking), and hov
(consistent line breaking) for the generation of a pretty printer. Syn has been
implemented in Standard ML. Because the Syn compiler translates the syntax
definition to input for the tools ML-Lex and ML-Yacc (ML implementations of
the well known UNIX tools lex and yacc), a syntax definition in Syn faces the
limitations of separate scanner and parser, and LALR(1) parsing.

Extended SDF [15] is an extension of SDF that embeds other specification
languages. An important application of the work is the embedding of PP pretty
printing rules (such as those in Figure 2c) in SDF attributes. Although this
improves the locality of the different syntax definitions, it does not solve re-
dundancy, as elements of the syntax are present both in the SDF, and in the
attached pretty printing rule.

More recently, Rendel and Ostermann [16] propose partial isomorphisms for
invertible computation, and use these to implement a combined parser/pretty
printer library in Haskell. Productions are specified using invertible combinators
used for parsing, unparsing, and abstract syntax (de)construction.

These approaches differ from our approach in their use of explicit operators
that specify layout and formatting. By using templates, we provide a concise
syntax that forgoes the use of operators and uses plain whitespace instead, while
still being sufficiently expressive for our case study with two complete DSLs. In
addition, they also do not consider completion templates.

Template-Based Editing Many early language workbenches used a template-
based editing paradigm in structure editors. Examples include Centaur [2] and
the Synthesizer Generator [17]. While these systems faced the same problem

12

of having to specify both abstract and concrete syntax, they did not have the
problem of specifying both a parser and an unparser.

Hybrid textual/structure editors make it possible to switch to a text editing
mode for a part of a program. Systems used to specify these editors do have
the added dimension of parsing and unparsing, where they need a specification
of formatted concrete syntax and a specification that specifies how to parse
concrete syntax independent of the layout. While there have been different ways
to address the issue, there has not been a solution that unifies the specification
of all syntactic aspects. Examples of hybrid systems include the Programming
System Generator (PSG) [1], PREGMATIC [21], and the ASF+SDF Meta-
Environment [12].

PREGMATIC [21] specifies syntax using as part of attribute grammars.
The grammar formalism does not include a formatting specification: instead,
unformatted templates are generated from the grammar. The user can then
edit the layout in those templates to format them as desired.

The Meta-Environment [12] is based on SDF for syntax definition, and orig-
inally used the Generic Syntax-directed Editor (GSE) [4] as a hybrid editor.
Contrary to many earlier structured editors it does not use pretty printing to
convert abstract syntax into concrete syntax. Instead it maintains a two-way
mapping between the text the user entered and the AST, so that a pretty printer
is not needed during editing, and the user has full control over the layout of the
program.

Template-based textual editors have text editing as their principal mode of
operation, but can provide textual templates for editing. Examples of tools to
create these editors include MontiCore [7], Xtext [5], and our own Spoofax [10].
Each of these systems has so far used a separate specification of syntax for
parsing, pretty printing, and completion templates. As part of our work we
implemented a template language for Spoofax, showing these aspects can be
combined.

8 Conclusion
Syntax discoverability has been a crucial advantage of structure editors for new
users of a language. Despite their excellent support for syntax discoverability,
structure editors have not been widely adopted. Based on immediate parsing
and analyses, modern textual code editors are also increasingly syntax-aware:
structure and textual editors are converging into a new editing paradigm that
combines text and templates. In these syntax-aware text editors, syntax dis-
covery is provided in the form of syntactic completion, which depends critically
on two features of a language workbench: first, it must be feasible to define
and maintain sensible completion proposals for editors, and second, the syntac-
tic completion proposals presented to the user must be relevant and complete.
Current text-based languages require redundant specification of the different as-
pects that make up a template-based editor. Evolution of the language means
that maintenance is required of all aspects in order to maintain completeness
and consistency.

This paper addresses the issue of effective specification and implementation
of syntax-aware textual editors. First, through unification of the specification
of syntax, thus addressing the higher risk of incomplete/incorrect syntax due

13

to redundant specifications. To accomplish this, we presented the design and
implementation of a specification language that incorporates enough informa-
tion so that syntax definition, pretty printer and completion templates can be
generated. Doing so ensures completion templates are complete and up-to-date,
thus improving the discoverability of syntax in the editor. Second, we describe
techniques to accurately determine the syntactic categories at the cursor loca-
tion, in order to present a relevant and complete set of completion proposals.
We showed that by applying grammar generation techniques, it is possible to
accomplish this goal without parser-specific modifications.

References
[1] R. Bahlke and G. Snelting. The PSG system: From formal language def-

initions to interactive programming environments. ACM Transactions on
Programming Languages and Systems, 8(4):547–576, 1986.

[2] P. Borras, D. Clément, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. CENTAUR: The system. In Proceedings of the third
ACM SIGSOFT/SIGPLAN software engineering symposium on Practical
software development environments, pages 14–24. ACM, 1988.

[3] R. Boulton. Syn: A single language for specifying abstract syntax trees,
lexical analysis, parsing and pretty-printing. Number 390. University of
Cambridge, Computer Laboratory, 1996.

[4] M. H. H. van Dijk and J. W. C. Koorn. GSE, a generic syntax-directed ed-
itor. Technical Report CS-R9045, Centrum voor Wiskunde en Informatica
(CWI), 1990.

[5] S. Efftinge and M. Voelter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, 2006.

[6] M. Fowler. Language workbenches: The killer-app for domain specific
languages?, 2005.

[7] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Monticore:
a framework for the development of textual domain specific languages. In
W. Schäfer, M. B. Dwyer, and V. Gruhn, editors, 30th International Con-
ference on Software Engineering (ICSE 2008), Companion Volume, pages
925–926. ACM, 2008.

[8] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

[9] Z. Hemel and E. Visser. Declaratively programming the mobile web with
mobl. In K. Fisher and C. V. Lopes, editors, Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages
and applications, OOPSLA 2011, pages 695–712. ACM, 2011.

[10] L. C. L. Kats and E. Visser. The Spoofax language workbench: rules for
declarative specification of languages and IDEs. In W. R. Cook, S. Clarke,

14

and M. C. Rinard, editors, Proceedings of the 25th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2010, pages 444–463. ACM, 2010.

[11] A. A. Khwaja and J. E. Urban. Syntax-directed editing environments:
Issues and features. In Proceedings of the 1993 ACM/SIGAPP Symposium
on Applied Computing, pages 230–237, 1993.

[12] P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering Methodology, 2(2):176–201,
1993.

[13] P. Klint and E. Visser. Using filters for the disambiguation of context-free
grammars. In Proceedings of the ASMICS Workshop on Parsing Theory.
Tech. Rep. 126–1994, Dipartimento di Scienze dell’Informazione, Università
di Milano, October 1994.

[14] T. J. Parr. Enforcing strict model-view separation in template engines. In
S. I. Feldman, M. Uretsky, M. Najork, and C. E. Wills, editors, Proceedings
of the 13th international conference on World Wide Web, WWW 2004, New
York, NY, USA, May 17-20, 2004, pages 224–233. ACM, 2004.

[15] N. Pouillard. Extending SDF. Technical Report 0407, EPITA, jul 2004.

[16] T. Rendel and K. Ostermann. Invertible syntax descriptions: unifying pars-
ing and pretty printing. In Proceedings of the third ACM Haskell symposium
on Haskell, pages 1–12. ACM, 2010.

[17] T. W. Reps and T. Teitelbaum. The synthesizer generator. In Proceedings
of the first ACM SIGSOFT/SIGPLAN software engineering symposium on
Practical software development environments, pages 42–48. ACM, 1984.

[18] U. Shani. Should program editors not abandon text oriented commands?
SIGPLAN Notices, 18(1):35–41, 1983.

[19] C. Simonyi, M. Christerson, and S. Clifford. Intentional software. In P. L.
Tarr and W. R. Cook, editors, Proceedings of the 21th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2006, pages 451–464. ACM, 2006.

[20] R. Snodgrass. Temporal databases. IEEE Computer, 19:22–64, 1992.

[21] M. G. J. van den Brand. PREGMATIC - a generator for incremental
programming environments. PhD thesis, University Nijmegen, 1992.

[22] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, Uni-
versity of Amsterdam, September 1997.

[23] M. Voelter and K. Solomatov. Language modularization and composi-
tion with projectional language workbenches illustrated with MPS. In
M. van den Brand, B. Malloy, and S. Staab, editors, Software Language
Engineering, Third International Conference, SLE 2010, Lecture Notes in
Computer Science. Springer, 2010.

[24] R. C. Waters. Program editors should not abandon text oriented com-
mands. SIGPLAN Notices, 17(7):39–46, 1982.

15

	Introduction
	Background
	Template-Based Syntax Definition
	Generating Template-Based Editors
	Runtime Support for Template-Based Editors
	Evaluation
	A Tax-Benefit Language
	The Mobl Mobile Web Programming Language

	Related Work
	Conclusion

