
Delft University of Technology
Software Engineering Research Group

Technical Report Series

When Frameworks Let You Down.
Platform-Imposed Constraints on the

Design and Evolution of Domain-Specific
Languages

D. M. Groenewegen, Z. Hemel, L.C.L Kats, E. Visser

Report TUD-SERG-2008-039

SERG



TUD-SERG-2008-039

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

D.M. Groenewegen, Z. Hemel, L.C.L Kats, and E. Visser. When Frameworks Let You Down. Platform-
Imposed Constraints on the Design and Evolution of Domain-Specific Languages In J. Gray, J Sprinkle, J.P.
Tolvanen, M. Rossi (editors) Workshop on Domain Specific Modeling (DSM’08)

@InProceedings{GHKV08.dsm,
author = {Danny M. Groenewegen and Zef Hemel and Lennart C. L. Kats

and Eelco Visser},
title = {When Frameworks Let You Down. Platform-Imposed Constraints

on the Design and Evolution of Domain-Specific Languages},
booktitle = {Workshop on Domain Specific Modelling (DSM’08)},
year = {2008},
address = {Nashville, Tennessee, USA},
month = {October},

}

c© copyright 2008, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.



When Frameworks Let You Down
Platform-Imposed Constraints on the

Design and Evolution of Domain-Specific Languages

Danny M. Groenewegen Zef Hemel Lennart C. L. Kats Eelco Visser
Delft University of Technology, The Netherlands

{d.m.groenewegen,z.hemel,l.c.l.kats,e.visser}@tudelft.nl

1. Introduction
Application frameworks encapsulate knowledge of a particular do-
main in a reusable library. However, based on a general-purpose
language, these do not provide notational constructs for the particu-
lar domain, and are limited to the static checks of the host language.
Verification of correctness, security, and style constraints, and op-
timizations in terms of the application domain are not possible or
very hard. It is common practice to build a Domain-Specific Lan-
guage (DSL) as a thin abstraction layer over a framework, provid-
ing domain-specific notations and enabling analysis and reasoning
at the level of these constructs (5; 6).

Using an established application framework as the platform for
a DSL helps in the understanding the domain, and supports reuse of
the domain knowledge gathered by the framework developers. By
means of a reference application, a small application implemented
using the framework, it is possible to identify the basic operations
that are important for the domain, and map these to language
constructs. Rather than designing a complete DSL “on paper,”
before its implementation, it is good practice to incrementally build
higher-level abstractions on top of the basic operations through a
process of inductive design (7). This enables quick turn-around
time for the development of the DSL and the subsequent gradual
extension as new applications are found, and new insights into the
domain are acquired.

Application frameworks abstract over a lower-level platform.
For instance, the Java Persistence API (JPA) abstracts over per-
sistence operations in relational databases. As frameworks are de-
signed for direct use by programmers, they tend to avoid com-
plex interfaces, hiding underlying details, and limiting the number
of concepts a programmer has to deal with. For code generation,
these hidden details may become important as a DSL evolves and
new features are added to it. A domain-specific language can “out-
grow” its platform if it does not provide the elementary operations
required to implement new aspects of the language. Despite the
benefits of an inductive approach towards designing DSLs, and the
merits of using established frameworks, this seems to be a recurring
problem in the evolution of DSLs. In this paper, we give examples
of occurrences of this problem and possible scenarios that describe
how it can be dealt with. The examples we give are taken from our
own experience with WebDSL, a domain-specific language for dy-
namic web applications with a rich data model (7). However, we
believe these issues occur in other DSLs as well and therefore pose
a more common problem.

2. Examples
The original design of WebDSL largely followed that of its target
platform, the Seam web development framework. However, over

time, new features were introduced that did not always match with
this framework. In this section we give three examples of such
extensions that were not directly or sufficiently supported by the
framework.

Data Model Modularity WebDSL has first-class language con-
structs for data model definitions in the form of entity declarations.
Data model definitions can be modularized into modules that each
represent a different application concern. For example, consider a
conference management system that has a generic user manage-
ment system, defining usernames and passwords. In this system,
all users have a list of papers they authored associated with them.
Rather than directly modifying the data model for users, entangling
the definition with a new concern, we designed a mechanism to
augment already defined entities in other modules (see Figure 1).
However, these kinds of partial entity declarations do not naturally
translate to regular Java classes. They would instead require par-
tial classes (such as in C#) or inter-type declarations (such as in
AspectJ), but neither is supported by the current target platform.

Template Mechanism For reuse of page or page element defini-
tions, WebDSL provides a template mechanism. Every page may
import one or more templates, and these in turn may import other
templates. For increased flexibility, we designed a system based
on dynamically scoped template overrides. This template mech-
anism is inspired by the TEX typesetting system (4), which pro-
vides dynamically scoped macro definitions. Consider Figure 2,
which demonstrates customizing the default behavior of templates
with local template redefinitions. Unfortunately, Seam’s templating
mechanism (Facelets) is based on the idea of template inheritance,
and is incompatible with the dynamic scoping mechanism. Again,
this extension posed a mismatch between what is supported by the
framework and what we would like to support in the DSL.

Access Control WebDSL provides specialized constructs for ac-
cess control. While basic access control could be implemented

module usermanagement

entity User {
username :: String
password :: Secret

}

module paper

extend entity User {
authored → Set <Paper >

}

Figure 1. Extension of data models in different modules

SERG When Frameworks Let You Down

TUD-SERG-2008-039 1



module pagelayout

define main() {
header ()
body()
footer ()

}

define body() {
// Default body

}

define page home() {
main()

define body() {
// New body , defined in the scope of page home()

}
}

Figure 2. Dynamically scoped templates.

module ac

rule page viewUser (*) {
viewingAllowed ()

}

module userpages

define page viewUser(u : User) {
// if viewingAllowed ()
output(u.name)
output(u.authored)

}

define page userList () {
for (u : User) {

// if viewingAllowed ()
navigate(viewUser(u))

}
}

Figure 3. Modular access control rules.

through the use of if-statements, which hide certain (parts of) pages
from the user if they do not have access to it. This approach, how-
ever, would be rather low-level, and would cause tangling of the
concern with other aspects of the code.

The Seam framework offers an access control solution, which
was deemed too inflexible for use in WebDSL. For instance, it as-
sumes role-based access control policies, while WebDSL should
support other policies as well. Seam’s access control policy does
not take access restrictions into account for the presentation of
web pages, and it is difficult to extend with additional behavior. In
WebDSL we wanted to support access control as a separate aspect
that is woven into the application such that access control rules can
have direct impact on page contents, e.g. by hiding navigation links
to restricted pagers. Therefore, the language was extended with a
specialized access control sub-language that allows the specifica-
tion of access control as a separate set of rules (1). These rules put
access control restrictions on pages, templates or other high-level
components (see Figure 3), which serve as join points for the access
control aspect language.

3. Scenarios
The examples described in the previous section indicate clear mis-
matches between frameworks and DSLs. In this section we describe
a number of scenarios that can be explored to deal with these issues.

3.1 Introducing Intermediate Transformation Steps
Some platform mismatches can be dealt with by introducing model-
to-model transformations, resolving certain shortcomings of the
platform. For instance, dynamically scoped templates can be imple-
mented through a transformation that statically expands templates.
Template calls can be resolved statically and replaced by the tem-
plate contents at generation time. A drawback of this solution is
that it leads to a significant increase in the size of the generated
code and cannot support recursive template calls. DSL features that
require a type of aspect weaving can also be implemented through
model transformations. Access control checks are woven into the
pages they apply to, so that all that is left is DSL code that can be
directly mapped to the underlying framework (1). Strictly adher-
ing to the implementation style prescribed by the framework, these
model-to-model transformations can cause abstraction inversion in
the generated code. A feature such as templating is reimplemented
on top of the existing mechanism, possibly incurring a performance
penalty.

Likewise, if a target language does not suffice for a particular
task, because it lacks certain features, it is possible to introduce
these as extensions to the language. In particular, features for mod-
ularity such as partial classes and methods or multi-methods can
be beneficial for code generation, and are not supported for all lan-
guages. By treating the target language as a first-class model, rather
than plain text, it is possible to use the same techniques for model
transformations as used in the rest of the DSL for realizing these ex-
tensions (2). In this manner the WebDSL generator internally gen-
erates partial Java classes, which in a later step of the generator are
merged through a set of model transformations.

3.2 Adapting the platform
Another option is to adapt the application framework to better
support the DSL. The JavaServer Faces library could be adapted
to support WebDSL’s dynamic scope templates for instance, and
Seam’s access control framework could be extended to suit our
particular needs.

However, the developers of the DSL should be very well ac-
quainted with the platform they are adapting. Often the developers
are not motivated to adapt other people’s work (the “not invented
here” attitude).

Once changes have been made to the target platform, the origi-
nal developers of that platform may evolve it over time (assuming
the framework developers are not the same group as the DSL de-
velopers). In this case there are three options: either stick to the
original adapted target platform, apply the changes made to the old
version to the new one, or try to convince the framework developers
to adopt the changes. Clearly, this is a maintenance issue.

3.3 Switching to a Different Target Platform
If a given platform really does not suffice for a particular task, it
may also be an option to replace it with an alternative. This can be
another, similar framework, or may be a lower-level alternative, for
instance by generating plain Java Servlets code.

The approach of compilation by normalization (3) can be used
to guide the generation to a low-level target. It iteratively abstracts
from a low-level target platform, while not restricting access to the
underlying primitives.

One issue that may come up is having introduced leaky abstrac-
tions. The DSL was initially built as a thin layer on top of a frame-
work, so is likely to be fairly specific to that platform. It may be
very difficult or even impossible to replace the platform with an-
other one, because it would imply changes to the DSL.

When Frameworks Let You Down SERG

2 TUD-SERG-2008-039



When it is decided to generate lower-level code it is likely that
much more code has to be generated, mimicking the behavior of the
framework that was previously used, because the semantics of the
DSL should not change. Thus, developing the generator is likely to
require a larger effort than when targeting a high-level framework.
Frameworks often encapsulate years of experience in their particu-
lar domain. Replacing them with a home brewed framework should
not be underestimated, neither in terms of maintenance or perfor-
mance optimizations. On the other hand, frameworks are usually
optimized to make writing code using them as simple as possible
for the developer, often at the expense of performance. For instance,
many Java frameworks depend on reflection to reduce the size of
client code. However, this incurs a runtime overhead, which can be
avoided when code is generated.

3.4 Cutting Your Losses
It may turn out that the previously described scenarios are simply
too expensive. The time and effort required to switch to a differ-
ent platform, adapt it, or to add additional model transformations
can be too costly and the gain too small. Settling for Facelet tem-
plates with inheritance, and the somewhat inflexible access control
solution of Seam could be an acceptable solution if this is the case.
In this scenario, the DSL and the framework are kept in sync. No
features are added to the DSL unless fully supported by the frame-
work.

This raises the question of what expectations one has of DSLs.
Are they intended as only a thin layer of syntax and set of checks on
top of a framework, or is that just a point of departure that leads to
an independently evolving language? Our experience from design-
ing and implementing WebDSL has taught us that frameworks form
a very useful foundation to build upon, but that at some point the
DSL may simply outgrow its underlying platform. In this paper we
outlined four scenarios to deal with this problem, each having their
respective advantages and drawbacks. Future research is required
to reveal best practices in this area.

Acknowledgments This research was supported by NWO/JAC-
QUARD projects 638.001.610, MoDSE: Model-Driven Software
Evolution, 612.063.512, and TFA: Transformations for Abstrac-
tions.

References
[1] D. Groenewegen and E. Visser. Declarative access control for WebDSL:

Combining language integration and separation of concerns. In
D. Schwabe and F. Curbera, editors, International Conference on Web
Engineering (ICWE 2008). IEEE CS Press, July 2008.

[2] Z. Hemel, L. C. L. Kats, and E. Visser. Code generation by model
transformation. A case study in transformation modularity. In J. Gray,
A. Pierantonio, and A. Vallecillo, editors, International Conference
on Model Transformation (ICMT 2008), Lecture Notes in Computer
Science. Springer, June 2008.

[3] L. C. L. Kats, M. Bravenboer, and E. Visser. Mixing source and byte-
code. A case for compilation by normalization. In G. Kiczales, ed-
itor, Proceedings of the 23rd ACM SIGPLAN Conference on Object-
Oriented Programing, Systems, Languages, and Applications (OOP-
SLA 2008), Nashville, Tenessee, USA, October 2008. ACM Press.

[4] D. E. Knuth. The TEXbook. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

[5] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006.

[6] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[7] E. Visser. WebDSL: A case study in domain-specific language engi-
neering. In R. Lammel, J. Saraiva, and J. Visser, editors, Generative and
Transformational Techniques in Software Engineering (GTTSE 2007),
Lecture Notes in Computer Science. Springer, 2008. Tutorial for Inter-
national Summer School GTTSE 2007; to appear.

SERG When Frameworks Let You Down

TUD-SERG-2008-039 3



When Frameworks Let You Down SERG

4 TUD-SERG-2008-039





TUD-SERG-2008-039
ISSN 1872-5392 SERG


